田珊珊1,2, 金亮1, 杜兆波1, 钟翔宇1, 黄伟1(), 刘远洋2
收稿日期:
2022-12-19
修回日期:
2023-01-10
接受日期:
2023-02-06
出版日期:
2023-09-25
发布日期:
2023-02-10
通讯作者:
黄伟
E-mail:gladrain2001@163.com
基金资助:
Shanshan TIAN1,2, Liang JIN1, Zhaobo DU1, Xiangyu ZHONG1, Wei HUANG1(), Yuanyang LIU2
Received:
2022-12-19
Revised:
2023-01-10
Accepted:
2023-02-06
Online:
2023-09-25
Published:
2023-02-10
Contact:
Wei HUANG
E-mail:gladrain2001@163.com
Supported by:
摘要:
超声速及高超声速飞行器在飞行过程中存在复杂的激波/边界层干扰问题,有效的流动控制技术已成为研究热点,鼓包是一项具有发展前景的被动控制技术。本文基于鼓包的控制机理,对激波/边界层干扰的被动控制技术研究进展进行了综述。介绍了激波/边界层干扰的主要流动特征并总结归纳了其研究现状;总结了常见的流动控制方法,分别对外流场中跨声速机翼减阻的激波控制鼓包、内流场中超声速及高超声速流动控制的壁面鼓包的作用机理及其研究进展进行了梳理,分析了鼓包的流动控制性能并对其发展前景进行了展望。
中图分类号:
田珊珊, 金亮, 杜兆波, 钟翔宇, 黄伟, 刘远洋. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报, 2023, 44(18): 28411-028411.
Shanshan TIAN, Liang JIN, Zhaobo DU, Xiangyu ZHONG, Wei HUANG, Yuanyang LIU. Research progress of shock wave/boundary layer interaction controls induced by bump[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28411-028411.
表1
激波/边界层干扰控制方法及相应机理
激波/边界层干扰控制方法 | 流动控制机理 | |
---|---|---|
被动控制 方法 | 壁面鼓包[ | 壁面外凸形变,模仿分离流结构,置换或排移低能流边界层,减小激波入射点附近的逆压梯度并将强激波分为若干道弱激波结构,近似实现等熵压缩,大幅减少波阻 |
微型涡流发生器[ | 引入流向涡,向边界层内输运高动量流体,增强边界层展向涡和脉动涡,增加边界层对分离的抵抗能力 | |
后向台阶[ | 来流经过后向台阶在台阶角处出现一个膨胀扇,膨胀扇与激波相互作用减弱激波引起的逆压梯度 | |
边界层抽吸[ | 壁面抽吸元将近壁面的低动量流体吸除,降低边界层厚度,增加壁面附近流动的动量 | |
次流循环[ | 在分离区的高压区及前部的低压区下方开孔设置循环管道,利用压力差形成次流循环,形成边界层抽吸及吹除组合,减小分离泡的尺寸,抑制边界层分离的产生 | |
无源凹腔[ | 凹槽形成自然的回流区,使高压流体通过空腔向低压区再循环,同时拆分激波系,减少激波系损失,达到降低激波阻力及减弱边界层增长的目的 | |
主动控制 方法 | 吹除控制[ | 在激波的起始点或者入射点的上游,通过缝隙往边界层内切向注入流体,为边界层中被阻滞的流体质点提供能量 |
射流控制[ | 通过射流与来流耦合形成正、反向旋转涡对,将高能流注入到边界层内, 减弱分离激波强度,增强边界层抵抗逆压梯度的能力 | |
等离子体控制[ | 通过激励器的放电实现空气电离和能量注入,增强气体的动量,改变流场特征 | |
磁流体MHD控制[ | 通过在电场产生等离子体的作用上叠加洛伦兹力,增加上游边界层的能量,抑制分离 |
1 | HADJADJ A, DUSSAUGE J P. Shock wave boundary layer interaction[J]. Shock Waves, 2009, 19(6): 449-452. |
2 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
3 | HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences, 2018, 101: 13-30. |
4 | HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109: 100545. |
5 | HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. |
6 | SCHÜLEIN E, SCHNEPF C, WEISS S. Concave bump for impinging-shock control in supersonic flows[J]. AIAA Journal, 2022, 60(5): 2749-2766. |
7 | ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4): 767-776. |
8 | ZHANG Y, TAN H J, SUN S, et al. Control of cowl shock/boundary-layer interaction in hypersonic inlets by bump[J]. AIAA Journal, 2015, 53(11): 3492-3496. |
9 | ZHANG Y, TAN H J, LI J F, et al. Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump[J]. AIAA Journal, 2018, 57(2): 696-705. |
10 | LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389-420. |
11 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
12 | BAGHERI H, AGHA MIRJALILY S ALI, OLOOMI S A A, et al. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation[J]. Acta Astronautica, 2021, 178: 616-624. |
13 | 张悦, 高婉宁, 程代姝. 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39(12): 2755-2763. |
ZHANG Y, GAO W N, CHENG D S. Control of cowl shock/boundary layer interaction by variable microramps based on shape memory alloy[J]. Journal of Propulsion Technology, 2018, 39(12): 2755-2763 (in Chinese). | |
14 | MONTAZER E, YARMAND H, SALAMI E, et al. A brief review study of flow phenomena over a backward-facing step and its optimization[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 994-1005. |
15 | LI W P, LIU H. Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step[J]. Aerospace Science and Technology, 2019, 84: 1011-1019. |
16 | ZHAI J, ZHANG C N, WANG F M, et al. Control of shock-wave/boundary-layer interaction using a backward-facing step[J]. Aerospace Science and Technology, 2022, 126: 107665. |
17 | ZHANG B H, ZHAO Y X, LIU J. Effects of bleed hole size on supersonic boundary layer bleed mass flow rate[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(8): 652-662. |
18 | REZA MAADI S, SEPAHI-YOUNSI J. Effects of bleed type on the performance of a supersonic intake[J]. Experimental Thermal and Fluid Science, 2022, 132: 110568. |
19 | YAN L, WU H, HUANG W, et al. Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow[J]. Acta Astronautica, 2020, 173: 131-138. |
20 | DU Z B, SHEN C B, SHEN Y, et al. Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet[J]. Acta Astronautica, 2021, 181: 468-481. |
21 | KANE A A, PEETALA R K, KULKARNI V. Investigation of pressure feedback technique to control ramp based SWBLI[J]. Acta Astronautica, 2022, 201: 482-495. |
22 | 钟翔宇, 黄伟, 钮耀斌, 等. 高超声速飞行器激波/边界层干扰控制方法综述[J]. 飞航导弹, 2021(6): 42-48,62. |
ZHONG X Y, HUANG W, NIU Y B, et al. A review of shock/boundary layer interference control methods for hypersonic vehicles[J]. Aerodynamic Missile Journal, 2021(6): 42-48,62 (in Chinese). | |
23 | NAGAMATSU H, OROZCO R. Porosity effect on supercritical airfoil drag reduction by shock wave/boundary layer control[C]∥Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1984. |
24 | NAGAMATSU H, FICARRA R. Supercritical airfoil drag reduction by passive shock wave/boundary layer control in the Mach number range.75 to.90[C]∥Proceedings of the 23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
25 | TINDELL R, WILLIS B, TINDELL R, et al. Experimental investigation of blowing for controlling oblique shock/boundary layer interactions[C]∥Proceedings of the 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
26 | SRIRAM R, JAGADEESH G. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed[J]. Aerospace Science and Technology, 2014, 36: 87-93. |
27 | 徐浩, 杜兆波, 钟翔宇, 等. 超声速气流中激波/边界层干扰微射流控制研究进展[J]. 航空兵器, 2022, 29(4): 83-90. |
XU H, DU Z B, ZHONG X Y, et al. Research progress of microjet control of shock wave/boundary layer interactions in supersonic flow field[J]. Aero Weaponry, 2022, 29(4): 83-90 (in Chinese). | |
28 | VERMA S B, MANISANKAR C, AKSHARA P. Control of shock-wave boundary layer interaction using steady micro-jets[J]. Shock Waves, 2015, 25(5): 535-543. |
29 | VERMA S B, MANISANKAR C. Control of compression-ramp-induced interaction with steady microjets[J]. AIAA Journal, 2019, 57(7): 2892-2904. |
30 | SHARMA V, ESWARAN V, CHAKRABORTY D. Determination of optimal spacing between transverse jets in a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 96: 105520. |
31 | CHEN Z Y, HU K X, MAO Y B, et al. Simple integral model for trajectories of jet deflection in crossflow[J]. Physics of Fluids, 2021, 33(11): 111703. |
32 | GAHLOT N K, SINGH N K. Numerical study of supersonic mixed compression air intake with an array of air jets[J]. Journal of Fluids Engineering, 2021, 143(4): 041206. |
33 | RAMASWAMY D P, SCHREYER A M. Effects of jet-to-jet spacing of air-jet vortex generators in shock-induced flow-separation control[J]. Flow, Turbulence and Combustion, 2022, 109(1): 35-64. |
34 | FENG L M, WANG H Y, CHEN Z, et al. Unsteadiness characterization of shock wave/turbulent boundary layer interaction controlled by high-frequency arc plasma energy deposition[J]. Physics of Fluids, 2021, 33(1): 015114. |
35 | TANG M X, WU Y, ZONG H H, et al. Experimental investigation on compression ramp shock wave/boundary layer interaction control using plasma actuator array[J]. Physics of Fluids, 2021, 33(6): 066101. |
36 | YANG H S, ZONG H H, LIANG H A, et al. Swept shock wave/boundary layer interaction control based on surface arc plasma[J]. Physics of Fluids, 2022, 34(8): 087119. |
37 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
38 | 王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的实验研究[J]. 航空学报, 2022, 43(1): 625905. |
WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characteristics of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905 (in Chinese). | |
39 | 李成成, 李芳, 杨斌, 等. 等离子体激励抑制喷管分离流动数值模拟[J]. 航空学报, 2021, 42(7): 124547. |
LI C C, LI F, YANG B, et al. Numerical investigation of nozzle flow separation control using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124547 (in Chinese). | |
40 | KALRA C S, ZAIDI S H, MILES R B, et al. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges[J]. Experiments in Fluids, 2011, 50(3): 547-559. |
41 | BISEK N J, RIZZETTA D P, POGGIE J. Plasma control of a turbulent shock boundary-layer interaction[J]. AIAA Journal, 2013, 51(8): 1789-1804. |
42 | 李益文, 樊昊, 张百灵, 等. 超声速非平衡电离磁流体流动控制试验和数值模拟[J]. 航空学报, 2017, 38(3): 120368. |
LI Y W, FAN H, ZHANG B L, et al. Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120368 (in Chinese). | |
43 | XUE L, SCHRIJER F F J, VAN OUDHEUSDEN B W, et al. Theoretical study on regular reflection of shock wave-boundary layer interactions[J]. Journal of Fluid Mechanics, 2020, 899: A30. |
44 | FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[R]. Washington, D.C.: NACA, 1940. |
45 | CHAPMAN D R. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition: NACA-TR-1356 [R]. Washington, D.C.: NACA, 1958. |
46 | MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[M]∥Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer Berlin Heidelberg, 2008: 151-163. |
47 | MACCORMACK R, PAULLAY A. Computational efficiency achieved by time splitting of finite difference operators[C]∥Proceedings of the 10th Aerospace Sciences Meeting. Reston: AIAA, 1972. |
48 | BALDWIN B, MACCORMACK R. Numerical solution of the interaction of a strong shock wave with a hypersonic turbulent boundary layer[C]∥Proceedings of the 7th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1974. |
49 | HUNG C, MACCORMACK R. Numerical solutions of supersonic and hypersonic laminar flows over a two-dimensional compression corner[C]∥Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975. |
50 | URBIN G, KNIGHT D, ZHELTOVODOV A. Large eddy simulation of a supersonic compression corner. [C]∥Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
51 | TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12): 125101. |
52 | SUN Z, GAN T, WU Y. Shock-wave/boundary-layer interactions at compression ramps studied by highspeed schlieren[J]. AIAA Journal, 2020, 58(4): 1681-1688. |
53 | XIE W Z, YANG S Z, ZENG C, et al. Improvement of the free-interaction theory for shock wave/turbulent boundary layer interactions[J]. Physics of Fluids, 2021, 33(7): 075104. |
54 | HUANG X, WANG L X, ZHONG D D, et al. Unsteady motion of shock wave for a supersonic compression ramp flow based on large eddy simulation[J]. Frontiers in Energy Research, 2022, 10: 854019. |
55 | JIANG Z, JI Y C, WANG J C. Compressibility effect on interaction of shock wave and turbulent boundary layer[J]. Physics of Fluids, 2022, 34(7): 075122. |
56 | BAO Y E, QIU R F, ZHOU K, et al. Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects[J]. Physics of Fluids, 2022, 34(4): 046109. |
57 | JHA A K, SHUKLA P, KHISTI P M, et al. Investigation of onset of velocity transition in free convection over an inclined flat plate by PIV[J]. Experimental Thermal and Fluid Science, 2023, 140: 110764. |
58 | BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5): 451-471. |
59 | ASHILL P, FULKER J, SHIRES A. A novel technique for controlling shock strength of laminar-flow airfoil sections, paper presented to the first european forum on laminar flow technology[C]∥Proceeding of 1st Europe Forurn on Laminar Flow Technology. 1992. |
60 | MAZAHERI K, KIANI K C, NEJATI A,et al. Optimization and analysis of shock wave/boundary layer interaction for drag reduction by shock control bump[J]. Aerospace Science and Technology, 2015, 42: 196-208. |
61 | COLLISS S P, BABINSKY H, NÜBLER K, et al. Vortical structures on three-dimensional shock control bumps[J]. AIAA Journal, 2016, 54(8): 2338-2350. |
62 | HOLDEN H, BABINSKY H. Shock/boundary layer interaction control using 3D devices[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
63 | NUEBLER K, LUTZ T, KRAEMER E, et al. Shock control bump robustness enhancement[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
64 | HAMID M A, TOUFIQUE HASAN A B M, ALIMUZZAMAN S M, et al. Compressible flow characteristics around a biconvex arc airfoil in a channel[J]. Propulsion and Power Research, 2014, 3(1): 29-40. |
65 | YANG Y, LIU X Q, SAEED A. Transonic drag reduction on supercritical wing section using shock control bumps[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(3): 207-214. |
66 | BRUCE P J, COLLISS S, BABINSKY H. Three-dimensional shock control bumps: Effects of geometry[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
67 | 聂瑞, 裘进浩, 季宏丽, 等. 自适应鼓包气动构型优化与结构概念设计[J]. 工程热物理学报, 2017, 38(9): 1896-1905. |
NIE R, QIU J H, JI H L, et al. Aerodynamic configuration optimization and structural concept design of adaptive bump[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1896-1905 (in Chinese). | |
68 | 陈旭亮, 张琛, 季宏丽, 等. SMA鼓包迟滞建模与控制策略[J]. 航空学报, 2021, 42(9): 224652. |
CHEN X L, ZHANG C, JI H L, et al. SMA bump hysteresis modeling and control strategy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224652 (in Chinese). | |
69 | 李沛峰, 陶于金, 张彬乾, 等. 翼身融合布局鼓包激波减阻技术研究[J]. 应用力学学报, 2018, 35(6): 1185-1191, 1413. |
LI P F, TAO Y J, ZHANG B Q, et al. Investigation of shock control bump for blended wing body configuration[J]. Chinese Journal of Applied Mechanics, 2018, 35(6): 1185-1191, 1413 (in Chinese). | |
70 | DENG F, QIN N. Vortex-generating shock control bumps for robust drag reduction at transonic speeds[J]. AIAA Journal, 2021, 59(10): 3900-3909. |
71 | 章胜华, 邓枫, 覃宁, 等. 激波控制鼓包对跨声速抖振影响的数值研究[J]. 航空学报, 2022, 43(11): 526806. |
ZHANG S H, DENG F, QIN N, et al. Numerical study on impact of shock control bump on transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526806 (in Chinese). | |
72 | DENG F, QIN N, LIU X Q, et al. Shock control bump optimization for a low sweep supercritical wing[J]. Science China Technological Sciences, 2013, 56(10): 2385-2390. |
73 | GRAMOLA M, BRUCE P J K, SANTER M. Passive control of 3D adaptive shock control bumps using a sealed cavity[J]. Journal of Fluids and Structures, 2022, 112: 103580. |
74 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
75 | BERNARDINI M, PIROZZOLI S, GRASSO F. The wall pressure signature of transonic shock/boundary layer interaction[J]. Journal of Fluid Mechanics, 2011, 671: 288-312. |
76 | PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823: 617-657. |
77 | SARTOR F, METTOT C, BUR R, et al. Unsteadiness in transonic shock-wave/boundary-layer interactions: Experimental investigation and global stability analysis[J]. Journal of Fluid Mechanics, 2015, 781: 550-577. |
78 | MORGAN B, DURAISAMY K, NGUYEN N, et al. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2013, 729: 231-284. |
79 | VIVEK P, MITTAL S. Buzz instability in a mixed-compression air intake[J]. Journal of Propulsion and Power, 2009, 25(3): 819-822. |
80 | HERRMANN D, SIEBE F, GÜLHAN A. Pressure fluctuations (buzzing) and inlet performance of an airbreathing missile[J]. Journal of Propulsion and Power, 2013, 29(4): 839-848. |
81 | SIMON P, BROWN D, HUFF R. Performance of external-compression bump inlet at Mach numbers of 1.5 and 2.0: NACA-RM-E56L19 [R]. Washington, D.C.: NACA, 1957. |
82 | HAMSTRA J W, SYLVESTER T G. System and method for diverting boundary layer air: US5779189[P]. 1998-07-14. |
83 | SVENSSON M. A CFD investigation of a generic bump and its application to a diverterless supersonic inlet[D]. Linköping: Linköping University, 2008. |
84 | HAMSTRA J, MCCALLUM B, MCFARLAN J, et al. Development, verification and transition of an advanced engine inlet concept for combat aircraft application: MP-121-P-43[R]. Washington, D.C.: Lockheed Martin Aeronautics Company, 2003. |
85 | 梁德旺, 李博. 无隔道进气道反设计及附面层排除机理分析[J]. 航空学报, 2005, 26(3): 286-289. |
LIANG D W, LI B. Reverse design of diverterless inlet and mechanism of diversion of boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 286-289 (in Chinese). | |
86 | 杨应凯. 枭龙飞机Bump进气道设计[J]. 南京航空航天大学学报, 2007, 39(4): 449-452. |
YANG Y K. Design of bump inlet of thunder/JF-17 aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(4): 449-452 (in Chinese). | |
87 | 王娇, 谭慧俊, 黄河峡. Bump进气道中鼓包诱导的激波/边界层干扰特性[J]. 航空动力学报, 2018, 33(1): 97-107. |
WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the Bump inlet[J]. Journal of Aerospace Power, 2018, 33(1): 97-107 (in Chinese). | |
88 | SOLTANI M R, ASKARI R. On the performance of a body integrated diverterless supersonic inlet[J]. Aerospace Science and Technology, 2019, 91: 525-538. |
89 | ASKARI R, SOLTANI M R. Symmetric and asymmetric performance investigation of a diverterless supersonic inlet[J]. AIAA Journal, 2022, 60(5): 2850-2859. |
90 | ASKARI R, SOLTANI M R. Flow asymmetry in a Y-shaped diverterless supersonic inlet: A novel finding[J]. AIAA Journal, 2020, 58(6): 2609-2620. |
91 | ASKARI R, SOLTANI M R, MOSTOUFI K, et al. Angle of attack investigations on the performance of a diverterless supersonic inlet[J]. Journal of Applied Fluid Mechanics, 2019, 12(6): 2017-2030. |
92 | HUANG G P, ZUO F Y, QIAO W Y. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology, 2018, 74: 160-172. |
93 | YU Z H, HUANG G P, XIA C, et al. A pressure-controllable bump based on the pressure-ridge concept[J]. Aerospace Science and Technology, 2019, 87: 133-140. |
94 | XU S C, WANG Y, WANG Z G, et al. Effects of bump parameters on hypersonic inlet starting performance[J]. Journal of Zhejiang University-SCIENCE A, 2022, 23(10): 807-819. |
95 | 张悦, 谭慧俊, 张启帆, 等. 一种进气道内激波/边界层干扰控制的新方法及其流动机理[J]. 宇航学报, 2012, 33(2): 265-274. |
ZHANG Y, TAN H J, ZHANG Q F, et al. A new method and its flow mechanism for control of shock/boundary layer interaction in hypersonic inlet[J]. Journal of Astronautics, 2012, 33(2): 265-274 (in Chinese). |
[1] | 王畅, 何龙, 徐栋霞, 唐敏, 马率, 吴希明. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084-529084. |
[2] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[3] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[4] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[5] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[6] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[7] | 王旺, 饶彩燕, 徐聪, 李思怡, 段毅, 张健. 激光能量沉积对超声速进气道流动的控制效果[J]. 航空学报, 2023, 44(S2): 729424-729424. |
[8] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[9] | 王浩祥, 肖尧, 张凯凯, 李广利, 常思源, 田中伟, 崔凯. 机体尾缘形状对高压捕获翼构型亚声速特性影响[J]. 航空学报, 2023, 44(6): 127215-127215. |
[10] | 张健, 张敏, 杜娟, 黄伟亮, 聂超群. 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023, 44(22): 128883-128883. |
[11] | 孙士珺, 李晓龙, 刘艳明, 王建华, 王松涛. 宽速域来流对超声通流风扇叶型气动性能的影响[J]. 航空学报, 2023, 44(21): 528523-528523. |
[12] | 王梦格, 何小明, 王娟娟, 张悦, 汪昆, 谭慧俊, 李留刚. 基于振荡式涡流发生器的激波/边界层干扰控制方法[J]. 航空学报, 2023, 44(20): 128503-128503. |
[13] | 康伟, 胡仕林, 王彦清. 介电弹性薄膜翼型的增升效应机理[J]. 航空学报, 2023, 44(18): 128318-128318. |
[14] | 张刘, 黄勇, 陈辅政, 朱正龙, 郭天豪, 姜裕标, 周铸. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224-128224. |
[15] | 刘汉儒, 陈南树, 刘宇, 胡之颉. 多孔介质流动控制及气动降噪研究进展[J]. 航空学报, 2023, 44(16): 27923-027923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学