1 |
曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574.
|
|
CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574 (in Chinese).
|
2 |
奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183.
|
|
XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183 (in Chinese).
|
3 |
冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报, 2021, 42(4): 524732.
|
|
FENG Y W, PAN W H, LIU J Q, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524732 (in Chinese).
|
4 |
王志刚, 王业光, 杨宁, 等. 基于LSTM的飞行数据挖掘模型构建方法[J]. 航空学报, 2021, 42(8): 525800.
|
|
WANG Z G, WANG Y G, YANG N, et al. Construction method of flight data mining model based on LSTM[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525800 (in Chinese).
|
5 |
王奕惟, 莫李平, 王奕首, 等. 基于全航段QAR数据和卷积神经网络的航空发动机状态辨识[J]. 航空动力学报, 2021, 36(7): 1556-1563.
|
|
WANG Y W, MO L P, WANG Y S, et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power, 2021, 36(7): 1556-1563 (in Chinese).
|
6 |
梁睿君, 冉文丰, 余传粮, 等. 基于CWT-CNN的齿轮箱运行故障状态识别[J]. 航空动力学报, 2021, 36(12): 2465-2473.
|
|
LIANG R J, RAN W F, YU C L, et al. Recognition of gearbox operation fault state based on CWT-CNN[J]. Journal of Aerospace Power, 2021, 36(12): 2465-2473 (in Chinese).
|
7 |
BARDET J, CYNTHIA F, LACAILLE J, et al. Unequal time series clustering applied on flight data[C]∥12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), 2017.
|
8 |
FAURE C, BARDET J M, OLTEANU M, et al. Comparison of three algorithms for parametric change-point detection[C]∥European Symposium on Neural Networks (ESANN), 2016: 2-7.
|
9 |
KEHAGIAS A, NIDELKOU E, PETRIDIS V. A dynamic programming segmentation procedure for hydrological and environmental time series[J]. Stochastic Environmental Research and Risk Assessment, 2006, 20(1): 77-94.
|
10 |
WANG P, WANG H X, WANG W. Finding semantics in time series[C]∥Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2011: 385-396.
|
11 |
HALLAC D, NYSTRUP P, BOYD S. Greedy Gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification, 2019, 13(3): 727-751.
|
12 |
MATSUBARA Y, SAKURAI Y, FALOUTSOS C. AutoPlait: Automatic mining of co-evolving time sequences[C]∥Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 193-204.
|
13 |
TAKAHASHI T, HOOI B, FALOUTSOS C. AutoCyclone: Automatic mining of cyclic online activities with robust tensor factorization[C]∥Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 213-221.
|
14 |
WANG J D, WANG F, ZHANG C S, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1600-1615.
|
15 |
RISSANEN J. A universal prior for integers and estimation by minimum description length[J]. The Annals of Statistics, 1983, 11(2): 416-431.
|
16 |
KIM H, ADELI H. Discrete cost optimization of composite floors using a floating-point genetic algorithm[J]. Engineering Optimization, 2001, 33(4): 485-501.
|
17 |
WITTEN D M, TIBSHIRANI R. Covariance-regularized regression and classification for high-dimensional problems[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 2009, 71(3): 615-636.
|
18 |
ZHAO M B, ZHANG Z, CHOW T W S, et al. Soft label based linear discriminant analysis for image recognition and retrieval[J]. Computer Vision and Image Understanding, 2014, 121: 86-99.
|
19 |
KEOGH E, CHU S, HART D, et al. Segmenting time series: A survey and novel approach[M]∥LAST M, KANDEL A, BUNKE H. Data Mining in Time Series Databases. Singapore: World Scientific, 2004: 1-21.
|
20 |
LEE C H, LIN C R, CHEN M S. Sliding-window filtering: an efficient algorithm for incremental mining[C]∥Proceedings of the Tenth International Conference on Information and Knowledge Management. New York: ACM, 2001: 263-270.
|
21 |
JERONYMO D C, BORGES Y C C, DOS SANTOS COELHO L. Image forgery detection by semi-automatic wavelet soft-thresholding with error level analysis[J]. Expert Systems with Applications, 2017, 85: 348-356.
|
22 |
GARREAU D, ARLOT S. Consistent change-point detection with kernels[J]. Electronic Journal of Statistics, 2018, 12(2): 4440-4486.
|
23 |
LIN J F S, KARG M, KULIĆ D N. Movement primitive segmentation for human motion modeling: A framework for analysis[J]. IEEE Transactions on Human-Machine Systems, 2016, 46(3): 325-339.
|
24 |
GHARGHABI S, YEH C C M, DING Y F, et al. Domain agnostic online semantic segmentation for multi-dimensional time series[J]. Data Mining and Knowledge Discovery, 2019, 33(1): 96-130.
|
25 |
VAN D M L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|