收稿日期:
2023-10-09
修回日期:
2023-10-10
接受日期:
2023-10-13
出版日期:
2024-03-15
发布日期:
2023-10-13
通讯作者:
黎方娟
E-mail:riverlfj04@163.com
基金资助:
Weina HUANG, Fangjuan LI(), Hongbin QI
Received:
2023-10-09
Revised:
2023-10-10
Accepted:
2023-10-13
Online:
2024-03-15
Published:
2023-10-13
Contact:
Fangjuan LI
E-mail:riverlfj04@163.com
Supported by:
摘要:
新时代中国社会经济和工业体系的高质量发展,对航空发动机的研制提出更高要求,迫切需要借助数字工程系统化提升产品敏捷研发能力、夯实自主研制基础和提高客户满意度。本文分析了国外数字工程实施现状和发展趋势,结合中国航空发动机行业数字化建设基础,提出了航空发动机数字工程总体技术框架,初步定义了数字工程在航空发动机全生命周期内的应用场景,对航空发动机数字工程建设的关键技术进行了初步识别和分析。在建设实施层面提出了逐步推行先导试点项目、构建数字化生态和文化、统筹算力支撑、加强仿真采信等发展建议。
中图分类号:
黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693.
Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693.
1 | GRIFFIN M D, BALDWIN K. Digital engineering strategy [R]. Washington, D.C.: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2018. |
2 | NORQUIST D L. DoD digital modernization strategy [R]. Washington, D.C.: Office of Prepublication and Security Review of Department of Defense, 2019. |
3 | BRAY W P. Digital systems engineering transformation strategy [R]. Washington, D.C.: United States Navy and Marine Corps, 2020. |
4 | HUTCHISON N, TAO H Y S, PEPE K, et al. Workforce and evaluation and training for digital engineering in the US department of defense[J]. INCOSE International Symposium, 2021, 31(1): 1271-1284. |
5 | MCDANIEL D R, TUCKEY T, MORTON S A. The HPCMP CREATETM-AV kestrel computational environment and its relation to NASA’s CFD vision 2030: AIAA-2017-0813[R]. Reston: AIAA, 2017. |
6 | KRAFT E M. Decision analytics in a lifecycle digital engineering environment: AIAA-2019-1364[R]. Reston: AIAA, 2019. |
7 | KRAFT E M. Digital engineering enabled systems engineering performance measures: AIAA-2020-0552[R]. Reston: AIAA, 2020. |
8 | VINODINI S, LEONARD B. MBSE digital system model for AF DCGS: AIAA-2018-1217[R]. Reston: AIAA, 2018. |
9 | GLAESSGEN E H, STRGEL D S. The digital twin paradigm for future NASA and U.S. Air Force vehicles: AIAA-2012-1818[R]. Reston: AIAA, 2012. |
10 | 刘亚威. 美军航空装备采办正向数字工程转型[J]. 航空科学技术, 2019, 30(6): 81-82. |
LIU Y W. US military aviation equipment acquisition is transforming into digital engineering[J]. Aeronautical Science & Technology, 2019, 30(6): 81-82 (in Chinese). | |
11 | 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376. |
ZHANG B, LI X, WAN X X. From digital twin to digital engineering modeling and simulation entering a new era[J]. Journal of System Simulation, 2019, 31(3): 369-376 (in Chinese). | |
12 | 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86. |
CUI Y L, WANG W W, WANG L, et al. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86 (in Chinese). | |
13 | 刘秀罗, 吴枫, 王佳, 等. 美军数字工程战略及进展研究[J]. 国防科技, 2022, 43(3): 27-35. |
LIU X L, WU F, WANG J, et al. A study on the U.S. digital engineering strategy and its progress[J]. National Defense Technology, 2022, 43(3): 27-35 (in Chinese). | |
14 | 王巍巍, 李茜, 崔艳林. XA100自适应变循环发动机首次试验达标的启示[J]. 国际航空, 2021(10): 58-61. |
WANG W W, LI Q, CUI Y L. GE XA100 running to future[J]. International Aviation, 2021(10): 58-61 (in Chinese). | |
15 | KOBRYN P, TUEGEL E, GEFFREY Z, et al. Digital thread and twin for systems engineering: EMD to disposal: AIAA-2017-0876[R]. Reston: AIAA, 2017. |
16 | 陈建伟, 杨春雷, 杨亮, 等. 美军数字工程最新进展及趋势分析研究[J]. 导弹与航天运载技术(中英文), 2023(1): 153-156. |
CHEN J W, YANG C L, YANG L, et al. Research on the latest progress and trend of US military digital engineering[J]. Missiles and Space Vehicles, 2023(1): 153-156 (in Chinese). | |
17 | GE. What is predix machine[EB/OL]. [2023-11-07]. . |
18 | Working Group TechNet. Planieropria roadmap“TechNet”[R]. Petersburg: Working Group TechNet., 2021 (in Russian). |
19 | 张强, 李茜, 王乐. 罗罗数字化转型之路[J]. 航空动力, 2023(2): 24-27. |
ZHANG Q, LI Q, WANG L. The digital transformation road of rolls-royce[J]. Aerospace Power, 2023(2): 24-27 (in Chinese). | |
20 | 张彪, 李嘉欣, 于硕, 等. 中国航发集成研发系统建设方案概述[J]. 航空动力, 2021(6): 63-67. |
ZHANG B, LI J X, YU S, et al. Development scheme for aero engine collaborative design management system[J]. Aerospace Power, 2021(6): 63-67 (in Chinese). | |
21 | 黄博, 姚烨, 王佳川. 航空发动机数值仿真智能综合集成平台架构研究[J]. 计算机集成制造系统, 2022, 28(7): 2112-2118. |
HUANG B, YAO Y, WANG J C. Architecture of intelligent integrated platform for aero-engine numerical simulation[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2112-2118 (in Chinese). | |
22 | 张卫善, 方隽, 黄博, 等. 商用航空发动机产品研发体系中台研究与探索[J]. 航空动力, 2021(4): 74-78. |
ZHANG W S, FANG J, HUANG B, et al. Research and exploration of middle-platform for commercial aero engine product research and development system[J]. Aerospace Power, 2021(4): 74-78 (in Chinese). | |
23 | 邱明星, 宋柳丽, 史妍妍. 研发体系建设与型号研制的相互融合[J]. 航空动力, 2018(4): 63-66. |
QIU M X, SONG L L, SHI Y Y. Concurrent management of RDS building & project development[J]. Aerospace Power, 2018(4): 63-66 (in Chinese). | |
24 | 郭荣飞, 陈伟, 李晓艳. 航空发动机生产过程设计制造协同研究与应用[J]. 内燃机与配件, 2020(5): 16-18. |
GUO R F, CHEN W, LI X Y. Research and application of collaborative design and manufacturing in aero-engine production process[J]. Internal Combustion Engine & Parts, 2020(5): 16-18 (in Chinese). | |
25 | 徐俊恩, 陈海鹏. 基于系统工程的航空发动机协同研制流程设计[J]. 现代信息科技, 2017, 1(1): 74-76. |
XU J E, CHEN H P. Design of aero engine collaborative development process based on system engineering[J]. Modern Information Technology, 2017, 1(1): 74-76 (in Chinese). | |
26 | 罗婷婷. 基于系统工程的商用航空发动机研制需求管理方法研究[J]. 航空制造技术, 2015, 58(3): 107-109, 112. |
LUO T T. System engineering-based requirement management method for commercial aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(3): 107-109, 112 (in Chinese). | |
27 | 李昌红, 张德志, 谈梦妮, 等. 航空发动机系统工程策划研究[J]. 航空动力, 2020(5): 56-61. |
LI C H, ZHANG D Z, TAN M N, et al. Research on the system engineering plan for aero engine[J]. Aerospace Power, 2020(5): 56-61 (in Chinese). | |
28 | 李伟. 基于系统工程的航空发动机标准体系建设研究[J]. 航空标准化与质量, 2016(6): 10-13. |
LI W. Research on the construction of aeroengine standard system based on system engineering[J]. Aeronautic Standardization & Quality, 2016(6): 10-13 (in Chinese). | |
29 | 郭放, 吴晶峰, 杨子江, 等. 基于系统工程的航空发动机安全性评估追溯模型框架[J]. 内燃机与配件, 2020(5): 171-173. |
GUO F, WU J F, YANG Z J, et al. Traceability model framework of aero-engine safety evaluation based on system engineering[J]. Internal Combustion Engine & Parts, 2020(5): 171-173 (in Chinese). | |
30 | 张玉金, 黄博, 廖文和. 面向场景的航空发动机基于模型的系统工程设计[J]. 计算机集成制造系统, 2021, 27(11): 3093-3102. |
ZHANG Y J, HUANG B, LIAO W H. MBSE unified modeling and design method of commercial aeroengine for operation scenario[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3093-3102 (in Chinese). | |
31 | 朱静, 杨晖, 高亚辉, 等. 基于模型的系统工程概述[J]. 航空发动机, 2016, 42(4): 12-16. |
ZHU J, YANG H, GAO Y H, et al. Summary of model based system engineering[J]. Aeroengine, 2016, 42(4): 12-16 (in Chinese). | |
32 | 李琛, 吴新, 崔利丰, 等. 基于MBSE思想的航空发动机控制系统设计方法[J]. 航空发动机, 2021, 47(4): 123-130. |
LI C, WU X, CUI L F, et al. Design method of aeroengine control system based on MBSE thought[J]. Aeroengine, 2021, 47(4): 123-130 (in Chinese). | |
33 | 南长峰, 孟祥海, 蔡真. 复杂产品数字样机开发的关键技术[J]. 航空制造技术, 2011, 54(22): 49-52. |
NAN C F, MENG X H, CAI Z. Key technology for digital mock-up research and development of complex product[J]. Aeronautical Manufacturing Technology, 2011, 54(22): 49-52 (in Chinese). | |
34 | 李中祥, 江和甫, 郭迎清. 航空发动机管路系统数字化设计[J]. 燃气涡轮试验与研究, 2006, 19(3): 47-52. |
LI Z X, JIANG H F, GUO Y Q. Aero-engine pipe system digital development[J]. Gas Turbine Experiment and Research, 2006, 19(3): 47-52 (in Chinese). | |
35 | 张定华, 李山. 航空发动机数字化协同平台关键技术研究[J]. 中国制造业信息化, 2009, 38(17): 35-39, 44. |
ZHANG D H, LI S. Key technology of aero engine digitalized collaborative platform[J]. Manufacture Information Engineering of China, 2009, 38(17): 35-39, 44 (in Chinese). | |
36 | 曲慧杨, 朱耀琴, 蒲睿英, 等. 复杂装备虚拟采办平台技术研究[J]. 系统仿真学报, 2018, 30(12): 4677-4685, 4692. |
QU H Y, ZHU Y Q, PU R Y, et al. Simulation-based acquisition platform for complex equipment[J]. Journal of System Simulation, 2018, 30(12): 4677-4685, 4692 (in Chinese). | |
37 | 王爱文, 曲慧杨, 周军华, 等. 虚拟采办全寿命周期管理技术研究及应用[J]. 系统仿真学报, 2012, 24(10): 2126-2130. |
WANG A W, QU H Y, ZHOU J H, et al. Research and application on SBA life-cycle management technology[J]. Journal of System Simulation, 2012, 24(10): 2126-2130 (in Chinese). | |
38 | ZWEBER G, KOLONAY R, KOBRYN P, et al. Digital thread and twin for systems engineering: Pred-MDD through TMRR: AIAA-2017-0875[R]. Reston: AIAA, 2017. |
39 | ZIMMERMAN P, GILBERT T, SALVATORE F. Digital engineering transformation across the Department of Defense[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2019, 16: 325-338. |
40 | OROZ J, ROOHI Z A, ABELEZELE S, et al. Implementing the digital thread-A proof-of-concept: AIAA-2023-1405[R]. Reston: AIAA, 2023. |
41 | GRIEVES M. Product lifecycle management: Driving the next generation of lean thinking[M]. New York: McGraw-Hill, 2006. |
42 | ZIMMERMAN P P. Models, simulations, and digital engineering in systems engineering restructure[R]. Springfield: 19th Annual NDIA Systems Engineering Conference, 2016. |
43 | CHEN T G, PENG L J, YANG J J, et al. Modeling, simulation, information technology and processing[R].Washington, D.C.: NASA, 2019. |
44 | 郭齐胜, 李永, 仝炳香, 等. 装备型号需求论证综合量化分析方法研究[J]. 装备指挥技术学院学报, 2009, 20(3): 1-5. |
GUO Q S, LI Y, TONG B X, et al. Study on the synthetical quantitative analysis method of equipment type requirement demonstration[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(3): 1-5 (in Chinese). | |
45 | ROPER W. There is No Spoon: The new digital acquisition reality[J]. Defense AR Journal, 2021, 28(4): 488. |
46 | 王爱文, 曲慧杨, 周军华, 等. 虚拟采办全寿命周期管理技术研究及应用[J]. 系统仿真学报, 2012, 24(10): 2126-2130. |
WANG A W, QU H Y, ZHOU J H, et al. Research and application on SBA life-cycle management technology[J]. Journal of System Simulation, 2012, 24(10): 2126-2130 (in Chinese). | |
47 | 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-970. |
CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5): 961-970 (in Chinese). | |
48 | 曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023, 35(1): 1-10. |
CAO J G. Development opportunities and application prospects of aero-engine simulation technology under digital transformation[J]. Journal of System Simulation, 2023, 35(1): 1-10 (in Chinese). | |
49 | SUNDARAM V, BROWNLOW L. MBSE based digital thread and digital system model for AF DCGS: AIAA-2018-1217[R]. Reston: AIAA, 2018. |
50 | EDWARD M K. Approach to the development and application of a digital thread/digital twin authoritative truth source: 10.2514/6.2018-4003[R]. Atlanta: American Institute of Aeronautics and Astronautics, 2018. |
51 | KRAFT E M. The air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge: AIAA-2016-0897[R]. Reston: AIAA, 2016. |
52 | KINARD D A. F-35 digital thread and advanced manufacturing[C]∥AIAA Aviation Forum, 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018. |
53 | SINGH V, WILLCOX K E. Engineering design with digital thread: AIAA-2018-0569[R]. Reston: AIAA, 2018. |
54 | 刘婷, 张建超. 数字主线应用于航空发动机的初步探讨[J]. 航空动力, 2021(2): 30-34. |
LIU T, ZHANG J C. Preliminary discussion on application of digital thread to aero engine[J]. Aerospace Power, 2021(2): 30-34 (in Chinese). | |
55 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese). | |
56 | 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制, 2018, 26(10): 286-290, 303. |
WANG L. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement & Control, 2018, 26(10): 286-290, 303 (in Chinese). | |
57 | 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力, 2019(4): 61-64. |
LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power, 2019(4): 61-64 (in Chinese). | |
58 | GRIEVES M. Origins of the digital twin concept[R]. Florida: Florida Institute of Technology, 2016. |
59 | Siemens. Apollo13: The first digital twin[EB/OL]. Berlin: Siemens, 2020. [2020-04-14]. . |
60 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
ZHANG L, LU H. Discussing digital twin from of modeling and simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007 (in Chinese). | |
61 | KRITZINGER W, KARNER M, TRAAR G, et al. Digital Twin in manufacturing: a categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022. |
62 | 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1-10. |
ZHANG L. Cold thinking about digital twinning and the modeling and simulation technology behind it[J]. Journal of System Simulation, 2020, 32(4): 1-10 (in Chinese). | |
63 | 肖洪, 史经纬, 王栋欢. 图解航空发动机数字孪生[M]. 西安: 西北工业大学出版社, 2023. |
XIAO H, SHI J W, WANG D H. Graphic digital twin of aero-engine[M]. Xi'an: Northwestern Polytechnical University Press, 2023 (in Chinese). | |
64 | ZHANG X Q, ZHU W H. Application framework of digital twin-driven product smart manufacturing system: a case study of aeroengine blade manufacturing[J]. International Journal of Advanced Robotic Systems, 2019, 16(5): 1-16. |
65 | 王丹, 王大秋. 密级标识技术在网间数据传输中的应用探讨[J]. 科技创新导报, 2020, 17(17): 1-2. |
WANG D, WANG D Q. Discussion on the application of secret identification technology in data transmission between networks[J]. Science and Technology Innovation Herald, 2020, 17(17): 1-2 (in Chinese). | |
66 | LORD E M. Cybersecurity for ybersecurity for acquisition decision authorities and program managers[EB/OL]. [2023-11-07 ].. |
67 | EDWARD M K. Decision analytics in a lifecycle digital engineering environment: AIAA-2019-1364[R]. Reston: AIAA, 2019. |
68 | CUMMINGS R M, MORTON S A. Overview of the DoD HPCMP hypersonic vehicle simulation initiative: AIAA-2018-5205[R]. Reston: AIAA, 2018. |
69 | POST D, ATWOOD C, NEWMEYER K, et al. The computational research and engineering acquisition tools and environments (CREATE) program[J]. Computing in Science & Engineering, 2016, 18(1): 10-13. |
70 | EDWARD M K. HPCMP CREATETM-AV and the air force digital thread: AIAA-2015-0042[R]. Reston: AIAA, 2015. |
[1] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[2] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
[3] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[4] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[5] | 陈立芳, 孙亚冰, 周书华, 高强, 乔保栋, 李栋. 基于真实数据反演的风扇转子本机平衡方法[J]. 航空学报, 2024, 45(4): 628321-628321. |
[6] | 马瑞贤, 王鑫, 王开明, 李斌, 廖明夫, 王四季. 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024, 45(4): 628350-628350. |
[7] | 肖袁, 冯坤, 胡明辉, 江志农. 航空发动机转子非稳态振动分量提取方法[J]. 航空学报, 2024, 45(3): 228158-228158. |
[8] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[9] | 胡应交, 徐峰, 杨志军. 航空发动机整机防结冰试验能力综述[J]. 航空学报, 2023, 44(S2): 729449-729449. |
[10] | 郑新前, 王钧莹, 黄维娜, 伏宇, 程荣辉, 熊洪洋. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 27099-027099. |
[11] | 万能, 庄其鑫, 郭彦亨, 常智勇, 王道. 拟合精度约束下航发叶片在机测量采样策略[J]. 航空学报, 2023, 44(7): 427151-427151. |
[12] | 李智豪, 张彪, 李健, 许传龙, 宋兆龙. 预混旋流燃烧火焰三维折射率场重建[J]. 航空学报, 2023, 44(4): 126480-126480. |
[13] | 张健, 张敏, 杜娟, 黄伟亮, 聂超群. 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023, 44(22): 128883-128883. |
[14] | 王维民, 户东方. 旋转叶片动应力非接触测量方法研究综述[J]. 航空学报, 2023, 44(22): 28516-028516. |
[15] | 何佳琦, 吴伟达, 罗阳军. 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023, 44(19): 328343-328343. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学