1 |
LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 586-598.
|
2 |
朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013.
|
|
ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013 (in Chinese).
|
3 |
朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.
|
|
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese).
|
4 |
韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
|
|
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese).
|
5 |
PLOTKIN K, MAGLIERI D. Sonic boom research: History and future (invited)[C]∥ 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003: 3575.
|
6 |
SAKATA K. Supersonic experimental airplane(NEXST) for next generation SST technology:AIAA-2002-0527 [R]. Reston: AIAA, 2002.
|
7 |
MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
|
8 |
JONES T. NASA’s quiet supersonic aircraft: AFRC⁃E-DAA⁃TN45171 [R]. Oshkosh: EAA Airventure, 2017.
|
9 |
QIAN Z S, YANG X M. Key aerodynamic technologies of high Mach number civil transport[C]∥ Proceeding of Young Research Conference of the 5th International Forum of Aviation Research, 2014.
|
10 |
MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom six decades of research. NASA/SP-2014-622[R]: Washington, D.C: NASA, 2014.
|
11 |
钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600.
|
|
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese).
|
12 |
QIAO J L, HAN Z H, ZHANG L W, et al. Far-field sonic boom prediction considering atmospheric turbulence effects: an improved approach[J]. Chinese Journal of Aeronautics, 2022, 35(9): 208-225.
|
13 |
黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505.
|
|
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese).
|
14 |
王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 124916.
|
|
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124916 (in Chinese).
|
15 |
FREUND D, HOWE D, SIMMONS F, et al. Quiet spike prototype aerodynamic characteristics from flight test[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
|
16 |
GRAHAM D, DAHLIN J, MEREDITH K, et al. Aerodynamic design of shaped sonic boom demonstration aircraft[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|
17 |
HAERING E, MURRAY J, PURIFOY D, et al. Airborne shaped sonic boom demonstration pressure measurements with computational fluid dynamics comparisons[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|
18 |
PUTNAM L E, CAPONE F J. Experimental determination of equivalent solid bodies to represent jets exhausting into a Mach 2.20 external stream: NASA TN-D-5553[R]: Washington, D.C: NASA, 1969.
|
19 |
BARGER R L, MELSON N D. Comparison of jet plume shape predictions and plume influence on sonic boom signature:NASA TP⁃3172[R]. Washington, D.C: NASA, 1992.
|
20 |
SICLARI M J. Ground signature extrapolation of three-dimensional near-field CFD predictions for several HSCT configurations[R]. Washington, D.C.: NASA Langley Research Center, 1992.
|
21 |
CASTNER R. Analysis of plume effects on sonic boom signature for isolated nozzle configurations[C]∥ 38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008.
|
22 |
LI W, CAMPBELL R, GEISELHART K, et al. Integration of engine, plume, and CFD analyses in conceptual design of low-boom supersonic aircraft[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
|
23 |
CASTNER R. Exhaust nozzle plume effects on sonic boom test results for isolated nozzles[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
|
24 |
CASTNER R, LAKE T. Exhaust plume effects on sonic boom for a delta wing and swept wing-body model[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
|
25 |
CASTNER R S, CLIFF S E, ELMILIGUI A A, et al. Plume and shock interaction effects on sonic boom in the 1-foot by 1-foot supersonic wind tunnel[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
|
26 |
CASTNER R S. Cart3D analysis of plume and shock interaction effects on sonic boom[C]∥ 33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015.
|
27 |
CLIFF S E, DENISON M F, MOINI-YEKTA S, et al. Wind tunnel model design for sonic boom studies of nozzle jet flow with shock interactions[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
|
28 |
DURSTON D A, CLIFF S E, DENISON M, et al. Nozzle plume/shock interaction sonic boom test results from the NASA Ames 9- by 7-foot supersonic wind tunnel[C]∥ 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
|
29 |
WINSKI C S, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of plume and shock interaction effects on sonic boom in the NASA Ames 9x7 supersonic wind tunnel[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
|
30 |
刘中臣, 钱战森, 冷岩. 声爆近场压力测量风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4): 636-645.
|
|
LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4): 636-645 (in Chinese).
|
31 |
刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 123596.
|
|
LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123596 (in Chinese).
|
32 |
季军, 邓祥东, 白玉平, 等. FL-3风洞喷流试验高精度数字阀的设计与实现[J]. 实验流体力学, 2014, 28(5): 76-80.
|
|
JI J, DENG X D, BAI Y P, et al. Design and implementation of high accurate digital valve for FL-3 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 76-80 (in Chinese).
|
33 |
白亚磊, 明晓. 槽道式气体流量计及其不确定度分析[J]. 计量学报, 2008(5): 441-444.
|
|
BAI Y L, MING X. Channel gas flowmeter and its precision analysis[J]. Acta Metrologica Sinica, 2008(5): 441-444 (in Chinese).
|