1 |
朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.
|
|
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese).
|
2 |
韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
|
|
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese).
|
3 |
丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2022, 43(9): 626310.
|
|
DING Y L, HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626310 (in Chinese).
|
4 |
钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600.
|
|
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese).
|
5 |
STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988.
|
6 |
MAGLIERI D J, PARROTT T J, HILTON D A, et al. Lateral-spread sonic-boom ground-pressure measurements from airplanes at altitudes to 75,000 feet and at Mach numbers to 2.0: NASA-TND-2021[R]. Washington, D.C.: NASA, 1963.
|
7 |
PIERCE A D. Spikes on sonic‐boom pressure waveforms[J]. The Journal of the Acoustical Society of America, 1968, 44(4): 1052-1061.
|
8 |
CROW S C. Distortion of sonic bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3): 529-563.
|
9 |
PIERCE A D. Statistical theory of atmospheric turbulence effects on sonic‐boom rise times[J]. The Journal of the Acoustical Society of America, 1971, 49(3B): 906-924.
|
10 |
AVER’YANOV M V, KHOKHLOVA V A, SAPOZH‑ NIKOV O A, et al. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media[J]. Acoustical Physics, 2006, 52(6): 623-632.
|
11 |
STOUT T A, SPARROW V W, BLANC-BENON P. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence[J]. The Journal of the Acoustical Society of America, 2021, 149(5): 3250-3260.
|
12 |
DAGRAU F, RÉNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2011, 130(1): 20-32.
|
13 |
KANAMORI M, TAKAHASHI T, ISHIKAWA H, et al. Numerical evaluation of sonic boom deformation due to atmospheric turbulence[J]. AIAA Journal, 2021, 59(3): 972-986.
|
14 |
BRADLEY K A, SPARROW V W, MORGENSTERN J M, et al. Sonic boom in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms: NASA/CR-2020-220509[R].Washington, D.C.: NASA, 2020.
|
15 |
Japan Aerospace Exploration Agency. Drop test for simplified evaluation of non-symmetrically distributed sonic boom[EB/OL]. (2012-03-30) [2020-08-18]. .
|
16 |
BLANC-BENON P, LIPKENS B, DALLOIS L, et al. Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2002, 111(1): 487-498.
|
17 |
AVERIYANOV M, BLANC-BENON P, CLEVELAND R O, et al. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1760-1772.
|
18 |
TAKAHASHI H, KANAMORI M, NAKA Y, et al. Statistical characterization of atmospheric turbulence behavior responsible for sonic boom waveform deformation[J]. AIAA Journal, 2018, 56(2): 673-686.
|
19 |
YULDASHEV P V, OLLIVIER S, KARZOVA M M, et al. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence[J]. The Journal of the Acoustical Society of America, 2017, 142(6): 3402-3415.
|
20 |
FUJINO K, KIKUCHI R, SHIMOYAMA K, et al. Effects of uncertainties in atmospheric turbulence and weather predictions on sonic boom: AIAA-2017-0280[R]. Reston: AIAA, 2017.
|
21 |
YULDASHEV P V, KARZOVA M M, KHOKHLOVA V A, et al. Numerical simulation of a nonlinear parabolic equation for analyzing the perceived loudness statistics of sonic boom wave after propagation through atmospheric turbulent layer[J]. Acoustical Physics, 2021, 67(1): 26-37.
|
22 |
OSTASHEV V E, WILSON D K. Acoustics in moving inhomogeneous media[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2015.
|
23 |
冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2): 123290.
|
|
LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123290 (in Chinese).
|
24 |
WERT K, BLANC-BENON P, JUVE D. Effect of turbulence scale resolution on numerical simulation of atmospheric sound propagation: AIAA-1998-2245[R]. Reston: AIAA, 1998.
|
25 |
SEEBASS R, ARGROW B. Sonic boom minimization revisited: AIAA-1998-2956[R]. Reston: AIAA, 1998.
|
26 |
乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736.
|
|
QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese).
|
27 |
韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344.
|
|
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese).
|
28 |
张力文, 韩忠华, 宋文萍, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022,43(12):125649.
|
|
ZHANG L W, HAN Z H, SONG W P, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(12):125649.
|
29 |
CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
|
30 |
RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253.
|
31 |
乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674.
|
|
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese).
|
32 |
王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 289-301.
|
|
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 289-301 (in Chinese).
|
33 |
张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039.
|
|
ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039 (in Chinese).
|
34 |
LUQUET D, MARCHIANO R, COULOUVRAT F. Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[J]. Journal of Computational Physics, 2019, 379: 237-261.
|
35 |
QIAO J L, HAN Z H, ZHANG L W, et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach[J]. Chinese Journal of Aeronautics, 2022, 35(9): 208-225.
|
36 |
PIERCE A D. Acoustics: An introduction to its physical principles and applications[M]. 3rd ed. Cham: Springer, 2019.
|
37 |
KADER B A, YAGLOM A M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers[J]. Journal of Fluid Mechanics, 1990, 212: 637-662.
|
38 |
BURGERS J M. Statistical problems connected with the solution of a nonlinear partial differential equation[M]∥Nonlinear Problems of Engineering. Amsterdam: Elsevier, 1964: 123-137.
|
39 |
HAYES W, HAEFELI R, KULSRUD H E. Sonic boom propagation in a stratified atmosphere, with computer program: NASA-CR-1299[R]. Washington,D.C.: NASA, 1969.
|
40 |
KANAMORI M, TAKAHASHI T, MAKINO Y, et al. Comparison of simulated sonic boom in stratified atmosphere with flight test measurements[J]. AIAA Journal, 2018, 56(7): 2743-2755.
|
41 |
LEE Y. Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids[D]. Austin: The University of Texas at Austin, 1993.
|
42 |
GALLIN L J, RÉNIER M, GAUDARD E, et al. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2559-2570.
|
43 |
STEVENS S S. Perceived level of noise by mark VII and decibels (E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601.
|
44 |
JACKSON G M, LEVENTHALL H G. Calculation of the perceived level of noise (PLdB) using Stevens' method (Mark VII)[J]. Applied Acoustics, 1973, 6(1): 23-34.
|