[1] ARNAL D, ARCHAMBAUD J P. Laminar-turbulent transition control:NLF, LFC, HLFC[C]//Advances in Laminar-Turbulent Transition Modeling, 2008. [2] DE'POMPEIS R, CINQUETTI P, MARTINI P I S. Development and certification flight test on the piaggio P.180 avanti aircraft:A general overview:SAE Technical Paper 911003[R]. Warrendale:SAE International,1991. [3] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615. [4] CROUCH J. Modeling transition physics for laminar flow control[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008. [5] EPPINK J L. The effect of forward-facing steps on stationary crossflow instability growth and breakfown[C]//AIAA Aerospace Sciences Meeting, 2018. [6] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191. [7] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 1:Methodology and sensitivities[J]. Journal of Aircraft, 2009, 46(4):1176-1190. [8] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 2:Practical application[J]. Journal of Aircraft, 2009, 46(4):1191-1199. [9] LIAO W, MALIK M R, LEE-RAUSCH E M, et al. Boundary-layer stability analysis of the mean flows obtained using unstructured grids[J]. Journal of Aircraft, 2015, 52(1):49-63. [10] SHI Y, GROSS R, MADER C A, et al. Transition prediction based on linear stability theory with the RANS solver for three-dimensional configurations[C]//Proceedings of the AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2018. [11] ARNAL D. Transition prediction in transonic flow[M]//Symposium transsonicum III. Berlin:Springer Berlin Heidelberg, 1989:253-262. [12] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684. [13] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47. [14] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [15] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [16] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. [17] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542. [18] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260. [19] BREZILLON J, DWIGHT R P. Applications of a discrete viscous adjoint method for aerodynamic shape optimisation of 3D configurations[J]. CEAS Aeronautical Journal, 2012, 3(1):25-34. [20] ALBRING T, SAGEBAUM M, GAUGER N R. New results in numerical and experimental fluid mechanics X[C]//19th STAB/DGLR Symposium Munich. Cham:Springer International Publishing, 2014. [21] HE P, MADER C A, MARTINS J R R A, et al. An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM[J]. Computers & Fluids, 2018, 168:285-303. [22] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese). [23] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1):522642. BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522642(in Chinese). [24] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5):122505. HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122505(in Chinese). [25] ZHANG P F, LU J, WANG Z D, et al. Adjoint-based optimization method with linearized SST turbulence model and a frozen gamma-theta transition model approach for turbomachinery design[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition, 2015. [26] KHAYATZADEH P, NADARAJAH S. Aerodynamic shape optimization of natural laminar flow (NLF) airfoils[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [27] HALILA G L, MARTINS J R, FIDKOWSKI K J. Adjoint-based aerodynamic shape optimization including transition to turbulence effects[J]. Aerospace Science and Technology, 2020, 107:106243. [28] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [29] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009. [30] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337. [31] SHI Y, MADER C A, HE S, et al. Natural laminar flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722. [32] SHI Y, MADER C A, HE S, et al. Natural laminar flow wing optimization using a discrete adjoint approach[J]. Structural and Multidisciplinary Optimization, 2021, 64(5):1-22. [33] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading-edge separation bubbles[M]//Numerical and physical aspects of aerodynamic flows II. Berlin:Springer, 1984:173-192. [34] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992. [35] SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88:95-109. [36] 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35(7):1836-1844. YANG T H, BAI J Q, WANG D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese). [37] MACK L M. Special course on stability and transition of laminar flow:AGARD-709[R]. Pairs:AGARD, 1984. |