王晓峰1, 屈峰1(
), 付俊杰1, 王泽宇1, 刘超宇1, 白俊强2
收稿日期:2022-12-05
修回日期:2022-12-22
接受日期:2023-03-21
出版日期:2023-10-15
发布日期:2023-04-17
通讯作者:
屈峰
E-mail:qufeng@nwpu.edu.cn
基金资助:
Xiaofeng WANG1, Feng QU1(
), Junjie FU1, Zeyu WANG1, Chaoyu LIU1, Junqiang BAI2
Received:2022-12-05
Revised:2022-12-22
Accepted:2023-03-21
Online:2023-10-15
Published:2023-04-17
Contact:
Feng QU
E-mail:qufeng@nwpu.edu.cn
Supported by:摘要:
内转式进气道拥有较好的来流捕获能力和较高的压缩效率,但此类进气道在初步设计时无法进行局部型面调节,难以改善激波/边界层干扰导致的流动分离、二次流等复杂流动结构对进气道性能造成的不利影响,仍具有较大的优化设计空间。目前,针对高超声速内转式进气道开展气动优化设计面临着型面复杂多变、设计变量规模较大、流场求解精度要求高等难题。为此,采用基于离散伴随的梯度类优化方法,对带斜楔前体内转式进气道开展了气动优化设计。优化结果表明,进气道内外压缩段型面的起伏变化显著改变了内部激波结构,减小了壁面压力梯度,进而弱化了流向涡;隔离段内激波串与附面层的干扰强度显著减弱,抑制了低能流区的扩张。相比于初始构型,优化构型在设计工况下出口处的总压恢复系数提升了8.767%,流量系数提升了0.163%,增压比提升了0.763%,阻力降低了1.658%,进气道的气动性能得到了一定改善。
中图分类号:
王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352.
Xiaofeng WANG, Feng QU, Junjie FU, Zeyu WANG, Chaoyu LIU, Junqiang BAI. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352.
| 1 | 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 123493. |
| WANG W X, ZHU T, ZHANG R T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese). | |
| 2 | ZUO F Y, MÖLDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144. |
| 3 | 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014: 10-16. |
| LI Y Z. Investigation of hypersonic inward turing inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 10-16 (in Chinese). | |
| 4 | 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525. |
| YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). | |
| 5 | 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078. |
| QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese). | |
| 6 | DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006. |
| 7 | SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416. |
| 8 | 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报, 2016, 31(7): 1630-1637. |
| LI Y Z, ZHANG K Y, ZHANG L H. Effect of bleeding on vortex region and starting performance of hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2016, 31(7): 1630-1637 (in Chinese). | |
| 9 | 李宥晨. 高超声速进气道扫掠激波/边界层干扰流动控制研究[D]. 南京: 南京航空航天大学, 2021: 65-87. |
| LI Y C. Study of the flow control on swept shock/turbulent boundary layer interaction in hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 65-87 (in Chinese). | |
| 10 | 李程鸿, 谭慧俊, 孙姝, 等. 流体式高超声速可调进气道流动机理及工作特性分析[J]. 宇航学报, 2011, 32(12): 2613-2621. |
| LI C H, TAN H J, SUN S, et al. Flow mechanism and operating characteristics of a fluidic variable hypersonic inlet[J]. Journal of Astronautics, 2011, 32(12): 2613-2621 (in Chinese). | |
| 11 | 张向洪, 伍贻兆, 王江峰. 基于电子束电离的磁流体力学进气道流动控制数值模拟[J]. 航空动力学报, 2012, 27(6): 1375-1383. |
| ZHANG X H, WU Y Z, WANG J F. Numerical simulation for magnetohydrodynamic inlets control using electron beam ionization[J]. Journal of Aerospace Power, 2012, 27(6): 1375-1383 (in Chinese). | |
| 12 | 陈兵, 徐旭, 蔡国飙. 基于遗传算法和空间推进方法的高超声速进气道优化设计研究[J]. 宇航学报, 2006, 27(5): 1010-1015. |
| CHEN B, XU X, CAI G B. Optimization design of hypersonic inlets using genetic algorithm based on a parabolized Navier-Stokes flow solver[J]. Journal of Astronautics, 2006, 27(5): 1010-1015 (in Chinese). | |
| 13 | 王昌盛, 额日其太, 丁文豪. 高超声速轴对称进气道多目标优化设计[J]. 航空动力学报, 2020, 35(7): 1392-1401. |
| WANG C S, ERIQITAI, DING W H. Multi-objective optimization design of hypersonic axisymmetric inlet[J]. Journal of Aerospace Power, 2020, 35(7): 1392-1401 (in Chinese). | |
| 14 | 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报, 2015, 36(12): 3759-3773. |
| WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3759-3773 (in Chinese). | |
| 15 | 高琨鹏, 陈兵, 徐旭. 基于PNS算法的高超声速内转式进气道优化设计[J]. 推进技术, 2017, 38(5): 998-1007. |
| GAO K P, CHEN B, XU X. Optimization design of hypersonic inward turning inlet based on SSPNS algorithm[J]. Journal of Propulsion Technology, 2017, 38(5): 998-1007 (in Chinese). | |
| 16 | KEANE A J, VOUTCHKOV I I. Surrogate approaches for aerodynamic section performance modeling[J]. AIAA Journal, 2020, 58(1): 16-24. |
| 17 | ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4): 687-696. |
| 18 | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012: 108-115. |
| NAN X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 108-115 (in Chinese). | |
| 19 | ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics, 2008, 17(1/2): 103-126. |
| 20 | HOUCK C R, JOINES J, KAY M G. A genetic algorithm for function optimization: A Matlab implementation: NCSU-IE-TR-95-09 [R]. Raleigh: North Carolina State University, 1995. |
| 21 | SEVANT N E, BLOOR M I G, WILSON M J. Aerodynamic design of a flying wing using response surface methodology[J]. Journal of Aircraft, 2000, 37(4): 562-569. |
| 22 | JAMESON A. Aerodynamic shape optimization using the adjoint method[EB/OL]. 2022-12-05. . |
| 23 | NADARAJAH S K, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization: AIAA-2000-0667[R]. Reston: AIAA, 2000. |
| 24 | 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报, 2020, 38(1): 21-26. |
| GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica, 2020, 38(1): 21-26 (in Chinese). | |
| 25 | KLINE H, PALACIOS F, ECONOMON T D, et al. Adjoint-based optimization of a hypersonic inlet: AIAA- 2015-3060[R]. Reston: AIAA, 2015. |
| 26 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664. |
| LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126664 (in Chinese). | |
| 27 | 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 49-69. |
| CHEN S. Gradient based aerodynamic shape optimization design and application[D].Xi’an: Northwestern Polytechnical University, 2016: 49-69 (in Chinese). | |
| 28 | MARTA A C, MADER C A, MARTINS J R R A, et al. A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J]. International Journal of Computational Fluid Dynamics, 2007, 21(9/10): 307-327. |
| 29 | SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
| 30 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
| 31 | GROPP W, KEYES D, MCINNES L C, et al. Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD[J]. The International Journal of High Performance Computing Applications, 2000, 14(2): 102-136. |
| 32 | KINEFUCHI K, STARIKOVSKIY A Y, MILES R B. Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation[J]. Physics of Fluids, 2018, 30(10): 106105. |
| 33 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1986: 151-160. |
| 34 | LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601. |
| 35 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
| 36 | PUEYO A, ZINGG D W. An efficient Newton-GMRES solver for aerodynamic computations: AIAA-1997-1955[R]. Reston: AIAA, 1997. |
| 37 | 董昊, 耿玺, 程克明, 等. 高超声速内收缩进气道设计与优化[M]. 北京: 科学出版社, 2018: 37-40. |
| DONG H, GENG X, CHENG K M, et al. Design and optimization of hypersonic inward turning inlet[M]. Beijing: Science Press, 2018: 37-40 (in Chinese). | |
| 38 | 周永易. 高超声速进气道中流向涡的生成流场及演化特性研究[D]. 长沙: 国防科技大学, 2019: 68-69. |
| ZHOU Y Y. Study on generation flowfield and evolution characteristics of streamwise vortices in hypersonic inlet[D]. Changsha: National University of Defense Technology, 2019: 68-69 (in Chinese). | |
| 39 | 何刚, 赵玉新, 周进. 等熵侧压诱导的超声速平板边界层二次流研究[J]. 推进技术, 2016, 37(9): 1624-1630. |
| HE G, ZHAO Y X, ZHOU J. Investigation on secondary-flows of a supersonic flat-plate boundary layer induced by isentropic sidewall compression[J]. Journal of Propulsion Technology, 2016, 37(9): 1624-1630 (in Chinese). | |
| 40 | 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报, 2010, 31(9): 1733-1739. |
| ZHANG H, TAN H J, SUN S. Characteristics of shock-train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1733-1739 (in Chinese). | |
| 41 | 丁猛, 李桦, 范晓樯. 等截面隔离段中激波串结构的数值模拟[J]. 国防科技大学学报, 2001, 23(1): 15-18. |
| DING M, LI H, FAN X Q. Numerical simulation of shock train in a constant area isolator[J]. Journal of National University of Defense Technology, 2001, 23(1): 15-18 (in Chinese). |
| [1] | 荣国梁, 杨逸帆, 李创创, 李志远, 李学良, 赵家权, 吴杰. 基于双喉道Ludwieg管风洞稳定段的匀流加热融合设计[J]. 航空学报, 2025, 46(9): 130906-130906. |
| [2] | 徐建宇, 周莉, 王占学, 是介, 史毫. 基于快速逐线计算模型的高超声速羽流红外辐射计算方法[J]. 航空学报, 2025, 46(8): 630778-630778. |
| [3] | 罗飞腾, 渠镇铭, 李海涛, 李新珂, 姚达豪, 陈文娟, 龙垚松, 韦宝禧, 满延进, 杨甫江, 程强, 孔武斌. 高超声速进气道预喷注技术研究进展与关键问题[J]. 航空学报, 2025, 46(8): 631189-631189. |
| [4] | 魏礼响, 徐惊雷, 陈匡世, 黄帅, 葛建辉, 宋光韬. 宽域高超声速飞行器可调矢量喷管方案设计与性能研究[J]. 航空学报, 2025, 46(8): 631086-631086. |
| [5] | 郑晓刚, 胡占仓, 蔡泽君, 施崇广, 朱呈祥, 尤延铖. 考虑巡航攻角的三维内转进气道设计[J]. 航空学报, 2025, 46(8): 631233-631233. |
| [6] | 郑晓刚, 施崇广, 张加乐, 张咪, 朱文磊, 朱呈祥, 尤延铖. 高超声速三维内转进气道研究进展综述[J]. 航空学报, 2025, 46(8): 631245-631245. |
| [7] | 姜宗林, 韩桂来, 汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 刘美宽. JF-22超高速风洞理论基础与关键技术[J]. 航空学报, 2025, 46(5): 531130-531130. |
| [8] | 吴光辉, 王景, 谢海润, 马涂亮, 苗强, 向纪鑫, 张淼. 数据与知识联合赋能的民机智能气动设计[J]. 航空学报, 2025, 46(5): 531485-531485. |
| [9] | 屈峰, 王青, 程少文, 王开强. 基于气动/轨迹/控制耦合的飞/发一体高超声速飞机气动外形优化设计[J]. 航空学报, 2025, 46(4): 130874-130874. |
| [10] | 陈军, 屈峰, 付俊杰. 基于遗传/梯度混合优化策略的高超内转式进气道设计方法[J]. 航空学报, 2025, 46(3): 130808-130808. |
| [11] | 杨凯, 张勐飞, 施崇广, 余耀堃, 郑晓刚, 朱呈祥, 尤延铖. 三维弯曲流面法及其在外流乘波体中的应用[J]. 航空学报, 2025, 46(2): 130492-130492. |
| [12] | 李学良, 李创创, 张亚寒, 苏伟, 吴杰. 分布式烧蚀形貌对高超声速平板边界层不稳定性影响[J]. 航空学报, 2025, 46(2): 130464-130464. |
| [13] | 王有盛, 孙立国, 魏金鹏, 谭文倩, 潘永豪. 基于改进鸡群-Gauss伪谱法的组合动力飞机爬升轨迹优化方法[J]. 航空学报, 2025, 46(2): 230737-230737. |
| [14] | 关山月, 田正雨, 谢文佳, 付黔粤, 褚雨航, 朱家俊. 高超声速再入钝头体飞行走廊等离子体化学反应分析[J]. 航空学报, 2025, 46(18): 131735-131735. |
| [15] | 邱宜成, 苑朝凯, 韩桂来. 飞行器雷击过程的数值仿真方法[J]. 航空学报, 2025, 46(18): 131899-131899. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

