王晓峰1, 屈峰1(), 付俊杰1, 王泽宇1, 刘超宇1, 白俊强2
收稿日期:
2022-12-05
修回日期:
2022-12-22
接受日期:
2023-03-21
出版日期:
2023-10-15
发布日期:
2023-04-17
通讯作者:
屈峰
E-mail:qufeng@nwpu.edu.cn
基金资助:
Xiaofeng WANG1, Feng QU1(), Junjie FU1, Zeyu WANG1, Chaoyu LIU1, Junqiang BAI2
Received:
2022-12-05
Revised:
2022-12-22
Accepted:
2023-03-21
Online:
2023-10-15
Published:
2023-04-17
Contact:
Feng QU
E-mail:qufeng@nwpu.edu.cn
Supported by:
摘要:
内转式进气道拥有较好的来流捕获能力和较高的压缩效率,但此类进气道在初步设计时无法进行局部型面调节,难以改善激波/边界层干扰导致的流动分离、二次流等复杂流动结构对进气道性能造成的不利影响,仍具有较大的优化设计空间。目前,针对高超声速内转式进气道开展气动优化设计面临着型面复杂多变、设计变量规模较大、流场求解精度要求高等难题。为此,采用基于离散伴随的梯度类优化方法,对带斜楔前体内转式进气道开展了气动优化设计。优化结果表明,进气道内外压缩段型面的起伏变化显著改变了内部激波结构,减小了壁面压力梯度,进而弱化了流向涡;隔离段内激波串与附面层的干扰强度显著减弱,抑制了低能流区的扩张。相比于初始构型,优化构型在设计工况下出口处的总压恢复系数提升了8.767%,流量系数提升了0.163%,增压比提升了0.763%,阻力降低了1.658%,进气道的气动性能得到了一定改善。
中图分类号:
王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352-128352.
Xiaofeng WANG, Feng QU, Junjie FU, Zeyu WANG, Chaoyu LIU, Junqiang BAI. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352-128352.
1 | 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 123493. |
WANG W X, ZHU T, ZHANG R T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese). | |
2 | ZUO F Y, MÖLDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144. |
3 | 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014: 10-16. |
LI Y Z. Investigation of hypersonic inward turing inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 10-16 (in Chinese). | |
4 | 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525. |
YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). | |
5 | 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078. |
QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese). | |
6 | DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006. |
7 | SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416. |
8 | 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报, 2016, 31(7): 1630-1637. |
LI Y Z, ZHANG K Y, ZHANG L H. Effect of bleeding on vortex region and starting performance of hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2016, 31(7): 1630-1637 (in Chinese). | |
9 | 李宥晨. 高超声速进气道扫掠激波/边界层干扰流动控制研究[D]. 南京: 南京航空航天大学, 2021: 65-87. |
LI Y C. Study of the flow control on swept shock/turbulent boundary layer interaction in hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 65-87 (in Chinese). | |
10 | 李程鸿, 谭慧俊, 孙姝, 等. 流体式高超声速可调进气道流动机理及工作特性分析[J]. 宇航学报, 2011, 32(12): 2613-2621. |
LI C H, TAN H J, SUN S, et al. Flow mechanism and operating characteristics of a fluidic variable hypersonic inlet[J]. Journal of Astronautics, 2011, 32(12): 2613-2621 (in Chinese). | |
11 | 张向洪, 伍贻兆, 王江峰. 基于电子束电离的磁流体力学进气道流动控制数值模拟[J]. 航空动力学报, 2012, 27(6): 1375-1383. |
ZHANG X H, WU Y Z, WANG J F. Numerical simulation for magnetohydrodynamic inlets control using electron beam ionization[J]. Journal of Aerospace Power, 2012, 27(6): 1375-1383 (in Chinese). | |
12 | 陈兵, 徐旭, 蔡国飙. 基于遗传算法和空间推进方法的高超声速进气道优化设计研究[J]. 宇航学报, 2006, 27(5): 1010-1015. |
CHEN B, XU X, CAI G B. Optimization design of hypersonic inlets using genetic algorithm based on a parabolized Navier-Stokes flow solver[J]. Journal of Astronautics, 2006, 27(5): 1010-1015 (in Chinese). | |
13 | 王昌盛, 额日其太, 丁文豪. 高超声速轴对称进气道多目标优化设计[J]. 航空动力学报, 2020, 35(7): 1392-1401. |
WANG C S, ERIQITAI, DING W H. Multi-objective optimization design of hypersonic axisymmetric inlet[J]. Journal of Aerospace Power, 2020, 35(7): 1392-1401 (in Chinese). | |
14 | 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报, 2015, 36(12): 3759-3773. |
WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3759-3773 (in Chinese). | |
15 | 高琨鹏, 陈兵, 徐旭. 基于PNS算法的高超声速内转式进气道优化设计[J]. 推进技术, 2017, 38(5): 998-1007. |
GAO K P, CHEN B, XU X. Optimization design of hypersonic inward turning inlet based on SSPNS algorithm[J]. Journal of Propulsion Technology, 2017, 38(5): 998-1007 (in Chinese). | |
16 | KEANE A J, VOUTCHKOV I I. Surrogate approaches for aerodynamic section performance modeling[J]. AIAA Journal, 2020, 58(1): 16-24. |
17 | ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4): 687-696. |
18 | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012: 108-115. |
NAN X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 108-115 (in Chinese). | |
19 | ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics, 2008, 17(1/2): 103-126. |
20 | HOUCK C R, JOINES J, KAY M G. A genetic algorithm for function optimization: A Matlab implementation: NCSU-IE-TR-95-09 [R]. Raleigh: North Carolina State University, 1995. |
21 | SEVANT N E, BLOOR M I G, WILSON M J. Aerodynamic design of a flying wing using response surface methodology[J]. Journal of Aircraft, 2000, 37(4): 562-569. |
22 | JAMESON A. Aerodynamic shape optimization using the adjoint method[EB/OL]. 2022-12-05. . |
23 | NADARAJAH S K, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization: AIAA-2000-0667[R]. Reston: AIAA, 2000. |
24 | 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报, 2020, 38(1): 21-26. |
GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica, 2020, 38(1): 21-26 (in Chinese). | |
25 | KLINE H, PALACIOS F, ECONOMON T D, et al. Adjoint-based optimization of a hypersonic inlet: AIAA- 2015-3060[R]. Reston: AIAA, 2015. |
26 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126664 (in Chinese). | |
27 | 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 49-69. |
CHEN S. Gradient based aerodynamic shape optimization design and application[D].Xi’an: Northwestern Polytechnical University, 2016: 49-69 (in Chinese). | |
28 | MARTA A C, MADER C A, MARTINS J R R A, et al. A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J]. International Journal of Computational Fluid Dynamics, 2007, 21(9/10): 307-327. |
29 | SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
30 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
31 | GROPP W, KEYES D, MCINNES L C, et al. Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD[J]. The International Journal of High Performance Computing Applications, 2000, 14(2): 102-136. |
32 | KINEFUCHI K, STARIKOVSKIY A Y, MILES R B. Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation[J]. Physics of Fluids, 2018, 30(10): 106105. |
33 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1986: 151-160. |
34 | LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601. |
35 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
36 | PUEYO A, ZINGG D W. An efficient Newton-GMRES solver for aerodynamic computations: AIAA-1997-1955[R]. Reston: AIAA, 1997. |
37 | 董昊, 耿玺, 程克明, 等. 高超声速内收缩进气道设计与优化[M]. 北京: 科学出版社, 2018: 37-40. |
DONG H, GENG X, CHENG K M, et al. Design and optimization of hypersonic inward turning inlet[M]. Beijing: Science Press, 2018: 37-40 (in Chinese). | |
38 | 周永易. 高超声速进气道中流向涡的生成流场及演化特性研究[D]. 长沙: 国防科技大学, 2019: 68-69. |
ZHOU Y Y. Study on generation flowfield and evolution characteristics of streamwise vortices in hypersonic inlet[D]. Changsha: National University of Defense Technology, 2019: 68-69 (in Chinese). | |
39 | 何刚, 赵玉新, 周进. 等熵侧压诱导的超声速平板边界层二次流研究[J]. 推进技术, 2016, 37(9): 1624-1630. |
HE G, ZHAO Y X, ZHOU J. Investigation on secondary-flows of a supersonic flat-plate boundary layer induced by isentropic sidewall compression[J]. Journal of Propulsion Technology, 2016, 37(9): 1624-1630 (in Chinese). | |
40 | 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报, 2010, 31(9): 1733-1739. |
ZHANG H, TAN H J, SUN S. Characteristics of shock-train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1733-1739 (in Chinese). | |
41 | 丁猛, 李桦, 范晓樯. 等截面隔离段中激波串结构的数值模拟[J]. 国防科技大学学报, 2001, 23(1): 15-18. |
DING M, LI H, FAN X Q. Numerical simulation of shock train in a constant area isolator[J]. Journal of National University of Defense Technology, 2001, 23(1): 15-18 (in Chinese). |
[1] | 郑建成, 曲智国, 谭贤四, 李志淮, 朱刚, 李陆军, 刘伟. 基于责任区划分的雷达网探测高超声速目标资源管理[J]. 航空学报, 2024, 45(8): 329022-329022. |
[2] | 戴今钊, 陈海昕. 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024, 45(6): 628942-628942. |
[3] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[4] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[5] | 杨博, 于贺, 樊子辰. 微观能量分析气动光学效应时变误差的方法[J]. 航空学报, 2024, 45(4): 128703-128703. |
[6] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[7] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[8] | 杨晓飞, 孙太璐, 孟德君, 尹海宝, 王咏梅. 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024, 45(2): 128625-128625. |
[9] | 熊有德, 李创创, 张振辉, 吴杰. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024, 45(10): 129042-129042. |
[10] | 倪炜霖, 王永海, 徐聪, 赤丰华, 梁海朝. 基于强化学习的高超飞行器协同博弈制导方法[J]. 航空学报, 2023, 44(S2): 729400-729400. |
[11] | 于哲峰, 梁世昌, 石卫波, 田得阳, 石安华, 廖东骏, 杨鹰. 类HTV⁃2飞行器光电特性的分析评估技术[J]. 航空学报, 2023, 44(S2): 729465-729465. |
[12] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[13] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[14] | 陈艺夫, 马宇航, 蓝庆生, 孙卫平, 史亚云, 杨体浩, 白俊强. 基于多项式混沌法的翼型不确定性分析及梯度优化设计[J]. 航空学报, 2023, 44(8): 127446-127446. |
[15] | 常思源, 肖尧, 李广利, 田中伟, 张凯凯, 崔凯. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349-127349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学