[1] 张正国. NASA未来先进民用飞机与推进系统设计[J]. 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation, 2010(2):56-59(in Chinese). [2] 张启鹏. 超临界自然层流翼型优化方法研究[D]. 南京:南京航空航天大学, 2018:1-3. ZHANG Q P. Optimization methods for supercritical natural laminar airfoils[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-3(in Chinese). [3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [4] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [5] STURDZA P. An aerodynamic design method for supersonic natural laminar flow aircraft[D]. Stanford:Stanford University, 2003. [6] LAUNDER B E, SHIMA N. Second-moment closure for the near-wall sublayer-Development and application[J]. AIAA Journal, 1989, 27(10):1319-1325. [7] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263. [8] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR2014-218178[R]. Washington, D.C.:NASA, 2014. [9] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202. [10] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]//The aerodynamics of heavy vehicles:Trucks, buses, and trains. Berlin, Heidelberg:Springer, 2004:339-352. [11] XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136. [12] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649. [13] CHAUVET N, DECK S, JACQUIN L. Zonal detached eddy simulation of a controlled propulsive jet[J]. AIAA Journal, 2007, 45(10):2458-2473. [14] SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4):709-737. [15] GUSEVA E K, GARBARUK A V, STRELETS M K. Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows[J]. Flow, Turbulence and Combustion, 2017, 98(2):481-502. [16] ZHANG L, LI J, MOU Y F, et al. Numerical investigation of flow around a multi-element airfoil with hybrid RANS-LES approaches based on SST model[J]. Journal of Mechanics, 2017, 34(2):123-134. [17] HUDDEVILLE R, PICCIN O, CASSOUDESALLE D. Opération décrochage-mesurement de frottement sur profiles AS 239 et A 240á la soufflerie F1 du CFM:RT-OA 19/5025[R]. 1987 [18] GLEYZES C. Operation decrochage-resultats de la 2eme campagne d'essais a F2-mesures de pression et velocimetrie laser:RT-DERAT[R]. Onera:Rt-Derat, 1989. [19] MELLEN C P, FROHLICH J, RODI W. Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil[J]. AIAA Journal, 2003, 41(4):573-581. [20] ZHOU L, GAO Z H, DU Y M. Flow-dependent DDES/γ-Reθt coupling model for the simulation of separated transitional flow[J]. Aerospace Science and Technology, 2019, 87:389-403. [21] SPALART P R. Young-person's guide to detached-eddy simulation grids[M]. Washington, D.C.:NASA, 2001 [22] SIMPSON R L. Junction flows[J]. Annual Review of Fluid Mechanics, 2001, 33:415-443. [23] DANDOIS J. Improvement of corner flow prediction using the quadratic constitutive relation[J]. AIAA Journal, 2014, 52(12):2795-2806. |