[1] 郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11):119-134. GUO D M, SUN Y W, JIA Z Y. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134(in Chinese). [2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese). [3] ULUTAN D, OZEL T. Machining induced surface integrity in titanium and nickel alloys:A review[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3):250-280. [4] 彭艳萍, 曾凡昌, 王俊杰, 等. 国外航空钛合金的发展应用及其特点分析[J]. 材料工程, 1997, 25(10):3-6. PENG Y P, ZENG F C, WANG J J, et al. Development, application and feature of titanium alloys in foreign aviation industry[J]. Journal of Materials Engineering, 1997, 25(10):3-6(in Chinese). [5] 贾振元, 毕广健, 王福吉, 等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23):199-208. JIA Z Y, BI G J, WANG F J, et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering, 2018, 54(23):199-208(in Chinese). [6] 康仁科, 马付建, 董志刚, 等. 难加工材料超声辅助切削加工技术[J]. 航空制造技术, 2012, 55(16):44-49. KANG R K, MA F J, DONG Z G, et al. Ultrasonic assisted machining of difficult-to-cut material[J]. Aeronautical Manufacturing Technology, 2012, 55(16):44-49(in Chinese). [7] 任军学, 张定华, 王增强, 等. 整体叶盘数控加工技术研究[J]. 航空学报, 2004, 25(2):205-208. REN J X, ZHANG D H, WANG Z Q, et al. Research on the NC machining technique of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):205-208(in Chinese). [8] 张德远. 中国的超声加工[J]. 机械工程学报, 2017, 53(19):1-2. ZHANG D Y. Ultrasonic machining in China[J]. Journal of Mechanical Engineering, 2017, 53(19):1-2(in Chinese). [9] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19):3-21. FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19):3-21(in Chinese). [10] 房善想, 赵慧玲, 张勤俭. 超声加工技术的应用现状及其发展趋势[J]. 机械工程学报, 2017, 53(19):22-32. FANG S X, ZHAO H L, ZHANG Q J. The application status and development trends of ultrasonic machining technology[J]. Journal of Mechanical Engineering, 2017, 53(19):22-32(in Chinese). [11] 张园, 康仁科, 刘津廷, 等. 超声振动辅助钻削技术综述[J]. 机械工程学报, 2017, 53(19):33-44. ZHANG Y, KANG R K, LIU J T, et al. Review of ultrasonic vibration assisted drilling[J]. Journal of Mechanical Engineering, 2017, 53(19):33-44(in Chinese). [12] 隈部淳一郎. 精密加工振动切削(基础和应用)[M]. 韩一昆, 薛万夫, 孙祥根,等,译. 北京:机械工业出版社, 1985:20-25. KUMABE J. Fundamentals and applications of precision machining vibration cutting[M]. HAN Y K, XUE W F, SUN X G, et al, translated. Beijing:China Machine Press, 1985:20-25(in Chinese). [13] BREHL D E, DOW T A. Review of vibration-assisted machining[J]. Precision Engineering, 2008, 32(3):153-172. [14] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156:103594. [15] 王立江, 张德远, 张明. 振动钻削微小孔提高加工精度的研究[J]. 机械工程学报, 1992, 28(1):31-35. WANG L J, ZHANG D Y, ZHANG M. A study on improving accuracy of drilling microvoid by vibration drilling[J]. Journal of Mechanical Engineering, 1992, 28(1):31-35(in Chinese). [16] 张德远,王立江. 振动钻削的局部断屑特性[J]. 应用科学学报, 1993, 11(4):337-344. ZHANG D Y, WANG L J. Partly chip breaking characteristic in vibration drilling[J]. Journal of Applied Sciences, 1993, 11(4):337-344(in Chinese). [17] 倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7):207-216. NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of titanium alloys[J]. Journal of Mechanical Engineering, 2019, 55(7):207-216(in Chinese). [18] 李远霄, 焦锋, 张世杰, 等. 高低频复合振动钻削CFRP/钛合金叠层结构试验[J]. 航空学报, 2021, 42(10):524802. LI Y X, JIAO F, ZHANG S J, et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524802(in Chinese). [19] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese). [20] 查慧婷, 冯平法, 张建富. 高体积分数SiCp/Al复合材料旋转超声铣磨加工的试验研究[J]. 机械工程学报, 2017, 53(19):107-113. ZHA H T, FENG P F, ZHANG J F. An experimental study on rotary ultrasonic machining of high volume fraction silicon carbide-reinforced aluminum matrix composites(SiCp/Al)[J]. Journal of Mechanical Engineering, 2017, 53(19):107-113(in Chinese). [21] 丁凯, 傅玉灿, 苏宏华, 等. 基于单颗磨粒磨削的超声振动参数与磨削参数匹配性研究[J]. 机械工程学报, 2017, 53(19):59-65. DING K, FU Y C, SU H H, et al. Study on matching performance of ultrasonic vibration and grinding parameters based on a single abrasive grinding[J]. Journal of Mechanical Engineering, 2017, 53(19):59-65(in Chinese). [22] 邵振宇, 李哲, 张德远, 等. 钛合金旋转超声辅助钻削的钻削力和切屑研究[J]. 机械工程学报, 2017, 53(19):66-72. SHAO Z Y, LI Z, ZHANG D Y, et al. Study on the thrust force and chip in rotary ultrasonic-assisted drilling of titanium alloys(Ti6Al4V)[J]. Journal of Mechanical Engineering, 2017, 53(19):66-72(in Chinese). [23] LIAO Y S, CHEN Y C, LIN H M. Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1988-1996. [24] YAO G, ZHANG D Y, GENG D X, et al. Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury[J]. Materials & Design, 2021, 201:109528. [25] YAO G, ZHANG D Y, GENG D X, et al. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration[J]. Ultrasonics, 2018, 84:126-133. [26] 刘立飞, 张飞虎, 刘民慧. 碳化硅陶瓷的超声振动辅助磨削[J]. 光学精密工程, 2015, 23(8):2229-2235. LIU L F, ZHANG F H, LIU M H. Ultrasonic assisted grinding for silicon carbide[J]. Optics and Precision Engineering, 2015, 23(8):2229-2235(in Chinese). [27] BAI W, SUN R L, LEOPOLD J, et al. Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting:Numerical modelling and experimental analysis[J]. Ultrasonics, 2017, 78:70-82. [28] SHAO Z Y, JIANG X G, GENG D X, et al. The interface temperature and its influence on surface integrity in ultrasonic-assisted drilling of CFRP/Ti stacks[J]. Composite Structures, 2021, 266:113803. [29] GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation, evaluation and suppression during drilling of composite laminates:A review[J]. Composite Structures, 2019, 216:168-186. [30] ZHANG D Y, SHAO Z Y, GENG D X, et al. Feasibility study of wave-motion milling of carbon fiber reinforced plastic holes[J]. International Journal of Extreme Manufacturing, 2021, 3(1):010401. [31] CHEN G, REN C Z, ZOU Y H, et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13. [32] GENG D X, TENG Y D, LIU Y H, et al. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes[J]. Journal of Materials Processing Technology, 2019, 270:195-205. [33] XU W X, ZHANG L C. Ultrasonic vibration-assisted machining:Principle, design and application[J]. Advances in Manufacturing, 2015, 3(3):173-192. [34] MORIWAKI T, SHAMOTO E. Ultrasonic elliptical vibration cutting[J]. CIRP Annals, 1995, 44(1):31-34. [35] MA C X, SHAMOTO E, MORIWAKI T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13):1305-1310. [36] LI X, ZHANG D Y. Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting[J]. Journal of Materials Processing Technology, 2006, 180(1-3):91-95. [37] LU D, WANG Q, WU Y B, et al. Fundamental turning characteristics of inconel 718 by applying ultrasonic elliptical vibration on the base plane[J]. Materials and Manufacturing Processes, 2015, 30(8):1010-1017. [38] WANG Q, WU Y B, GU J, et al. Fundamental machining characteristics of the in-base-plane ultrasonic elliptical vibration assisted turning of inconel 718[J]. Procedia CIRP, 2016, 42:858-862. [39] 李勋, 张德远. 单激励超声椭圆振动车削薄壁筒实验研究[J]. 航空学报, 2006, 27(4):720-723. LI X, ZHANG D Y. Research on experiments of single actuator driven ultrasonic elliptical vibration cutting ultra-thin wall parts[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):720-723(in Chinese). [40] 张德远. 振动切削的精密微细切削特性[J]. 北京航空航天大学学报, 1993, 19(4):61-68. ZHANG D Y. The mechanism of precision cutting in vibration cutting[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993, 19(4):61-68(in Chinese). [41] DING H, IBRAHIM R, CHENG K, et al. Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12):1115-1118. [42] WU C J, CHEN S J, XIAO C W, et al. Longitudinal-torsional ultrasonic vibration-assisted side milling process[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(10):3356-3363. [43] GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture, 2017, 123:160-170. [44] LIU J, ZHANG D Y, QIN L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):141-150. [45] GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B:Engineering, 2020, 183:107698. [46] GENG D X, ZHANG D Y, LI Z, et al. Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks[J]. Ultrasonics, 2017, 75:80-90. [47] GENG D X, ZHANG D Y, XU Y G, et al. Rotary ultrasonic elliptical machining for side milling of CFRP:Tool performance and surface integrity[J]. Ultrasonics, 2015, 59:128-137. [48] ZHANG C, SONG Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism[J]. Ultrasonics, 2019, 95:79-94. [49] SUI H, ZHANG X Y, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Materials Processing Technology, 2017, 247:111-120. [50] LU Z H, ZHANG D Y, ZHANG X Y, et al. Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Materials Processing Technology, 2020, 279:116584. [51] ZHANG X Y, LU Z H, SUI H, et al. Surface quality and residual stress study of high-speed ultrasonic vibration turning Ti-6Al-4V alloys[J]. Procedia CIRP, 2018, 71:79-82. [52] LI S M, ZHANG D Y, LIU C J, et al. Influence of dynamic angles and cutting strain on chip morphology and cutting forces during titanium alloy Ti-6Al-4V vibration-assisted drilling[J]. Journal of Materials Processing Technology, 2021, 288:116898. [53] LI S M, ZHANG D Y, SHAO Z Y, et al. Information feedback self-adaptive harmony search algorithm for the bovine cortical bone vibration-assisted drilling optimization[J]. Measurement, 2020, 149:107020. [54] ZHANG D Y, WANG L J. Investigation of chip in vibration drilling[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3):165-176. [55] ZHANG D Y, CHEN D C. Relief-face friction in vibration tapping[J]. International Journal of Mechanical Sciences, 1998, 40(12):1209-1222. [56] 张德远, 陈鼎昌. 钛合金振动攻丝降低攻丝扭矩的研究[J]. 机械工程学报, 1994(1):18-22, 29. ZHANG D Y, CHEN D C. Study on tapping torque in titanium alloys vibration tapping[J]. Chinese Journal of Mechanical Engineering, 1994(1):18-22, 29(in Chinese). [57] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12):3535-3549. [58] PENG Z L, ZHANG X Y, ZHANG D Y. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools[J]. Tribology International, 2021, 155:106766. [59] PENG Z L, ZHANG X Y, ZHANG D Y. Integration of finishing and surface treatment of Inconel 718 alloy using high-speed ultrasonic vibration cutting[J]. Surface and Coatings Technology, 2021, 413:127088. [60] PENG Z L, ZHANG X Y, ZHANG D Y. Effect of radial high-speed ultrasonic vibration cutting on machining performance during finish turning of hardened steel[J]. Ultrasonics, 2021, 111:106340. [61] ZHANG X Y, SUI H, ZHANG D Y, et al. Measurement of ultrasonic-frequency repetitive impulse cutting force signal[J]. Measurement, 2018, 129:653-663. [62] ZHANG X Y, SUI H, ZHANG D Y, et al. Study on the separation effect of high-speed ultrasonic vibration cutting[J]. Ultrasonics, 2018, 87:166-181. [63] ZHANG X Y, SUI H, ZHANG D Y, et al. An analytical transient cutting force model of high-speed ultrasonic vibration cutting[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):3929-3941. [64] ZHANG X Y, LU Z H, PENG Z L, et al. Development of a tool-workpiece thermocouple system for comparative study of the cutting temperature when high-speed ultrasonic vibration cutting Ti-6Al-4V alloys with and without cutting fluids[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):237-246. [65] LIU J J, JIANG X G, HAN X, et al. Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8):1333-1348. [66] 刘佳佳, 姜兴刚, 张德远. 钛合金高速旋转超声椭圆振动侧铣削切屑特征和刀具磨损研究[J]. 机械工程学报, 2019, 55(19):186-194. LIU J J, JIANG X G, ZHANG D Y. Research on the characteristics of chips and tool flank wear in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55(19):186-194(in Chinese). [67] 张翔宇, 隋翯, 张德远, 等. 超声振动改善深孔镗削加工质量[J]. 机械工程学报, 2017, 53(19):143-148. ZHANG X Y, SUI H, ZHANG D Y, et al. The improvement of deep-hole boring machining quality assisted with ultrasonic vibration[J]. Journal of Mechanical Engineering, 2017, 53(19):143-148(in Chinese). [68] HAN X, ZHANG D Y. Effects of separating characteristics in ultrasonic elliptical vibration-assisted milling on cutting force, chip, and surface morphologies[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9-10):3075-3084. [69] 张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19):120-127. ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19):120-127(in Chinese). [70] ZHANG X Y, PENG Z L, LI Z M, et al. Influences of machining parameters on tool performance when high-speed ultrasonic vibration cutting titanium alloys[J]. Journal of Manufacturing Processes, 2020, 60:188-199. [71] CHENG M L, ZHANG D Y, CHEN H W, et al. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J]. Journal of Materials Processing Technology, 2014, 214(11):2395-2401. [72] 刘佳佳, 姜兴刚, 高泽, 等. 高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J]. 机械工程学报, 2019, 55(11):215-223. LIU J J, JIANG X G, GAO Z, et al. Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55(11):215-223(in Chinese). [73] LI X, YANG S L, LU Z H, et al. Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens[J]. Journal of Materials Processing Technology, 2020, 275:116386. [74] LIU J J, JIANG X G, HAN X, et al. Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8):1451-1465. [75] SUI H, ZHANG X Y, ZHANG D Y. Surface modeling and analysis of high-speed ultrasonic vibration cutting[J]. Machining Science and Technology, 2021, 25(1):100-117. [76] JIANG X G, ZHANG X Y, ZHU X B, et al. Study of phase shift control in high-speed ultrasonic vibration cutting[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2467-2474. [77] ZHANG M L, ZHANG D Y, GENG D X, et al. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V[J]. Materials & Design, 2020, 191:108658. [78] ZHANG M L, ZHANG D Y, GENG D X, et al. Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2020, 821:153266. [79] ZHANG M L, ZHANG D Y, GUO H L, et al. High-speed rotary ultrasonic elliptical milling of Ti-6Al-4V using high-pressure coolant[J]. Metals, 2020, 10(4):500. [80] PENG Z L, ZHANG X Y, ZHANG D Y. Improvement of Ti-6Al-4V surface integrity through the use of high-speed ultrasonic vibration cutting[J]. Tribology International, 2021, 160:107025. |