1 |
徐劳立, 刘宇星, 王越. 航空涡轮发动机中的物理学[J]. 物理与工程, 2017, 27(1): 84-87.
|
|
XU L L, LIU Y X, WANG Y. The physics in aero turbine engine[J]. Physics and Engineering, 2017, 27(1): 84-87 (in Chinese).
|
2 |
陈焕铭, 胡本芙, 张义文, 等. 飞机涡轮盘用镍基粉末高温合金研究进展[J]. 材料导报, 2002, 16(11): 17-19.
|
|
CHEN H M, HU B F, ZHANG Y W, et al. Recent development in nickel-based powder superalloy used in aircraft turbines[J]. Materials Reports, 2002, 16(11): 17-19 (in Chinese).
|
3 |
YU J H, LI X, ZHAO W S, et al. A brief review on the status of machining technology of fir-tree slots on aero-engine turbine disk[J]. Advances in Mechanical Engineering, 2022, 14(7): 168781322211134.
|
4 |
孙一帆, 胡国杰, 刘梦金, 等. 喷丸强化对2024铝合金/钛合金铆接件微动疲劳性能的影响[J]. 表面技术, 2023, 52(1): 381-393.
|
|
SUN Y F, HU G J, LIU M J, et al. Effect of shot peening on fretting fatigue resistance of 2024 aluminum alloy/titanium alloy riveted joint[J]. Surface Technology, 2023, 52(1): 381-393 (in Chinese).
|
5 |
WU J J, ZHAO J B, QIAO H C, et al. Evaluating methods for quality of laser shock processing[J]. Optik, 2020, 200: 162940.
|
6 |
SUN R J, LI L H, ZHU Y, et al. Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening[J]. Optics & Laser Technology, 2019, 115: 166-170.
|
7 |
DORMAN M, TOPARLI M B, SMYTH N, et al. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects[J]. Materials Science and Engineering: A, 2012, 548: 142-151.
|
8 |
SIKHAMOV R, FOMIN F, KLUSEMANN B, et al. The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole[J]. Metals, 2020, 10(4): 495.
|
9 |
ACHINTHA M, NOWELL D, FUFARI D, et al. Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling[J]. International Journal of Fatigue, 2014, 62: 171-179.
|
10 |
STICCHI M, SCHNUBEL D, KASHAEV N, et al. Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components[J]. Applied Mechanics Reviews, 2015, 67(1): 010801.
|
11 |
CURTO-CÁRDENAS D, CALAF-CHICA J, BRAVO DÍEZ P M, et al. Cold expansion process with multiple balls—Numerical simulation and comparison with single ball and tapered mandrels[J]. Materials, 2020, 13(23): 5536.
|
12 |
FU Y C, GEE D, SUH H, et al. Cold expansion technology of connection holes in aircraft structures: A review and prospect[J]. Chinese Journal of Aeronautics, 2015, 28(4): 961-973.
|
13 |
VAARA J, KUNNARI A, FRONDELIUS T. Literature review of fatigue assessment methods in residual stressed state[J]. Engineering Failure Analysis, 2020, 110: 104379.
|
14 |
PUCILLO G P. The effects of the cold expansion degree on the fatigue crack growth rate in rail steel[J]. International Journal of Fatigue, 2022, 164: 107130.
|
15 |
LIU J, GOU W X, LIU W, et al. Effect of hammer peening on fatigue life of aluminum alloy 2A12-T4[J]. Materials & Design, 2009, 30(6): 1944-1949.
|
16 |
CAO X, ZHANG P, LIU S, et al. A novel hole cold-expansion method and its effect on surface integrity of nickel-based superalloy[J]. Journal of Materials Science & Technology, 2020, 59: 129-137.
|
17 |
张毅峰, 杨明华, 付传锋. 叶片锻件用GH4169合金的热处理工艺研究[J]. 轨道交通装备与技术, 2013(2): 8-10.
|
|
ZHANG Y F, YANG M H, FU C F. Study on heat treatment process of GH4169 alloy for blade forgings[J]. Rail Transportation Equipment and Technology, 2013(2): 8-10 (in Chinese).
|
18 |
WANG B, LOU Y, TONG X, et al. Obtaining GH 4169 alloy forgings with uniform fine grain structure, comprises performing stepwise aging heat treatment and recrystallization annealing, reducing forged mixed crystal structure of GH4169 alloy and uniformly refining grains: CN115821180-A [P]. 2023-03-21.
|
19 |
孔永华, 刘瑞毅, 王飞, 等. 不同热处理的热连轧GH4169合金组织及抗蠕变性能研究[J]. 稀有金属材料与工程, 2013, 42(4):829-832.
|
|
KONG Y H, LIU R Y, WANG F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 829-832 (in Chinese).
|
20 |
谭海波, 孙亚利. 热处理工艺对GH4169高温合金锻件组织与力学性能的影响[J]. 热加工工艺, 2022, 51(2): 114-116, 109.
|
|
TAN H B, SUN Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings[J]. Hot Working Technology, 2022, 51(2): 114-116, 109 (in Chinese).
|
21 |
张航, 雷学林, 何云, 等. 基于有限元仿真的聚酰亚胺切削参数优化[J]. 华东理工大学学报(自然科学版), 2022, 48(2): 265-272.
|
|
ZHANG H, LEI X L, HE Y, et al. Optimization of polyimide cutting parameters based on finite element simulation[J]. Journal of East China University of Science and Technology, 2022, 48(2): 265-272 (in Chinese).
|
22 |
YAO S L, LEI X L, WANG R Z, et al. A novel cold expansion process for improving the surface integrity and fatigue life of small-deep holes in Inconel 718 superalloys[J]. International Journal of Fatigue, 2022, 154: 106544.
|
23 |
全国产品尺寸和几何技术规范标准化技术委员会. 产品几何量技术规范(GPS) 表面结构 轮廓法 表面粗糙度 术语 参数测量: [S]. 北京: 中国标准出版社, 2004.
|
|
National Technical Committee for Standardization of Product Dimensions and geometry Technical specifications. Geometrical Product Specifications (GPS)—Surface texture—Profile method—Surface roughness—Terminology—Measurement of surface roughness parameters: [S]. Beijing: Standards Press of China, 2004 (in Chinese).
|
24 |
韩坤鹏, 张定华, 姚倡锋, 等. 滚压强化表面状态特征的疲劳演化及抗疲劳机制研究进展[J]. 航空学报, 2021, 42(10): 524302.
|
|
HAN K P, ZHANG D H, YAO C F, et al. Fatigue evolution and anti-fatigue mechanism of surface characteristics induced by deep rolling: A review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524302 (in Chinese).
|
25 |
王志光, 杨文玉, 闫琳. 切削奥氏体不锈钢0Cr18Ni9加工硬化的试验研究[J]. 中国机械工程, 2012, 23(24): 2950-2955.
|
|
WANG Z G, YANG W Y, YAN L. Experimental research on machining hardening of 0Cr18Ni9 austenite stainless steel[J]. China Mechanical Engineering, 2012, 23(24): 2950-2955 (in Chinese).
|
26 |
林忠亮, 白清顺, 王洪飞, 等. 孔用衬套冷挤压的强化机理与疲劳寿命研究进展[J]. 表面技术, 2023, 52(4): 1-14, 99.
|
|
LIN Z L, BAI Q S, WANG H F, et al. Research progress of strengthening mechanism and fatigue life in cold extrusion of bushing for hole[J]. Surface Technology, 2023, 52(4): 1-14, 99 (in Chinese).
|
27 |
孟令琪, 赵世炜, 梁振兴, 等. 表面粗糙度及粗糙表面占比对DD10合金疲劳性能影响研究[J]. 山西冶金, 2023, 46(2): 4-6, 9.
|
|
MENG L Q, ZHAO S W, LIANG Z X, et al. Study on the effect of surface roughness and roughness ratio on fatigue properties of DD10 alloy[J]. Shanxi Metallurgy, 2023, 46(2): 4-6, 9 (in Chinese).
|
28 |
伊琳娜, 汝继刚, 黄敏, 等. 孔挤压强化对2124铝合金疲劳寿命及微观组织的影响[J]. 航空材料学报, 2016, 36(5): 31-37.
|
|
YI L N, RU J G, HUANG M, et al. Influence of hole cold expansion on microstructure and fatigue life of 2124 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(5): 31-37 (in Chinese).
|
29 |
刘谨, 赵志毅, 薛润东. 析出相对GH141宏观残余应力的影响[J]. 稀有金属, 2017, 41(11): 1258-1264.
|
|
LIU J, ZHAO Z Y, XUE R D. Effect of precipitates on macroscopic residual stress of GH141[J]. Chinese Journal of Rare Metals, 2017, 41(11): 1258-1264 (in Chinese).
|
30 |
SHENG J, LIU H X, LIN Y Y, et al. Micromechanism of high-temperature fatigue properties of inconel 718 nickel-based alloy treated by laser peening[J]. Journal of Laser Micro, 2022, 17(1): 58-68.
|
31 |
BELYAKOV A, SAKAI T, MIURA H, et al. Grain refinement in copper under large strain deformation[J]. Philosophical Magazine, Part A, 2001, 81(11): 2629-2643.
|
32 |
ZHANG X C, ZHANG Y K, LU J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering: A, 2010, 527(15): 3411-3415.
|
33 |
HU Y X, YAO Z Q. Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd: YAG pulsed laser[J]. Surface and Coatings Technology, 2008, 202(8): 1517-1525.
|
34 |
MCCLUNG R C. A literature survey on the stability and significance of residual stresses during fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(3): 173-205.
|