李秀红1, 王兴富1, 李文辉2(), 陈海滨1,3, 杨胜强1,3
收稿日期:
2023-11-09
修回日期:
2023-12-02
接受日期:
2023-12-29
出版日期:
2024-07-15
发布日期:
2024-01-24
通讯作者:
李文辉
E-mail:wenhui_li7190@126.com
基金资助:
Xiuhong LI1, Xingfu WANG1, Wenhui LI2(), Haibin CHEN1,3, Shengqiang YANG1,3
Received:
2023-11-09
Revised:
2023-12-02
Accepted:
2023-12-29
Online:
2024-07-15
Published:
2024-01-24
Contact:
Wenhui LI
E-mail:wenhui_li7190@126.com
Supported by:
摘要:
形性协同加工是实现航发关重件高寿命、高可靠性的重要途经,也是当前制造领域最具挑战的工程难题之一,其中形性协同滚抛(又称“滚磨光整加工”)工艺是解决这一难题极具潜力的手段之一。基于此,综合国内外文献资料,对形性协同滚抛工艺基本理论及航发关重件应用的研究现状进行分析,首先概述了形性协同滚抛工艺基本内涵和研究历程,其次从颗粒动力学行为、加工介质影响、材料去除机制及模型等方面阐述形性协同滚抛工艺基本理论的研究现状,接着从形性协同滚抛效应、喷丸-滚抛组合效应以及新方式新工艺等方面介绍了形性协同滚抛工艺在提高叶片、整体叶盘、机匣、轴承以及齿轮等航发关重件性能的应用现状,最后对形性协同滚抛工艺进行总结和展望,以期为航发关重件形性协同滚抛的进一步发展提供借鉴和参考。
中图分类号:
李秀红, 王兴富, 李文辉, 陈海滨, 杨胜强. 航发关重件形性协同滚抛工艺研究进展[J]. 航空学报, 2024, 45(13): 629860-629860.
Xiuhong LI, Xingfu WANG, Wenhui LI, Haibin CHEN, Shengqiang YANG. Research progress on precision and performance synergistic finishing for aerospace engine critical components[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629860-629860.
表1
航发关重件形性协同工艺的应用
航发关重件 | 形性协同滚抛工艺加工工序 | 目前用于解决的工程难题 |
---|---|---|
叶片 | 砂轮抛光或砂带抛光等精加工工序后,表面处理前进行 | 转子叶片:降低叶片表面粗糙度值,改善表面应力,提高叶片疲劳强度 静子叶片:适当降低表面粗糙度值,消除加工表面部分加工应力,显现叶身型面、缘板流道面的加工痕迹(叶身型面不允许有加工痕迹),并适当消除加工痕迹 |
整体叶盘 | 叶片精抛光后进行 | 降低表面粗糙度值,表面均匀一致性,并产生残余压应力,提高叶片疲劳强度 |
齿轮 | 喷丸强化后进行 | 降低表面粗糙度值,降低齿面对工作接触的敏感性 |
航发机匣 | 机加工工序后进行 | 环形机匣:降低内外表面粗糙度值,去除机匣外表面铣削加工产生的毛刺 箱体机匣:内腔多余物清理,降低内腔表面粗糙度值 |
轴承 | 磨削或精研工序后进行 | 降低表面粗糙度值,去除表面色差、保证整体均匀一致性 |
表2
航发关重件的形性协同滚抛效应
零件 | 滚抛运动方式 | 表面完整性优化指标 | 服役性能 | ||
---|---|---|---|---|---|
表面粗糙度Ra值 | 残余应力 | 显微硬度 | |||
叶片 | 主轴式、振动式 | 0.2~0.25 μm | 约-400~-800 MPa | O | 疲劳寿命提升10倍以上[ |
整体叶盘 | 主轴式、振动式 | Ra≤0.25 μm | 最大值达-800 MPa 深度可达100 μm以上 | O | 疲劳频率提高35%[ |
齿轮 | 振动式、主轴式 | Ra≤0.2 μm | 约-697~-917 MPa 深度约80 μm | 略有提升 | 工作温度下降约13%[ 疲劳寿命提高5.3~5.6倍[ 振动降低9.1%~24.7%,噪声略有降低[ |
环形机匣 | 振动式 | O | 约-300~-500 MPa | O | O |
轴承套圈 | 离心式、振动式、主轴式 | 0.02~0.03 μm | 约-800~-1 800 MPa 深度可达80 μm | 略有提升 | 疲劳寿命提高90%左右[ |
轴承滚子 | 涡流式、振动式 | Ra≤0.03 μm | O | O | O |
1 | 向巧, 胡晓煜, 孙培培. 振兴航空动力 实现民族梦想——航空发动机发展之我见[J]. 航空动力, 2018(1): 7-11. |
XIANG Q, HU X Y, SUN P P. Revitalize aviation power realize the national dream——Opinion on the development of China aero engine industry[J]. Aerospace Power, 2018(1): 7-11 (in Chinese). | |
2 | 姚倡锋. “航空发动机关键零件抗疲劳制造”专题序言[J]. 航空材料学报, 2021, 41(4): 2. |
YAO C F. Preface to the topic “Anti-fatigue manufacturing of key parts of aeroengine”[J]. Journal of Aeronautical Materials, 2021, 41(4): 2 (in Chinese). | |
3 | 毕超, 刘袆, 杜海涛, 等. 抗疲劳制造技术的发展及其在高端轴承制造中的应用[J]. 航空精密制造技术, 2017, 53(1): 1-6. |
BI C, LIU Y, DU H T, et al. Development of anti-fatigue manufacturing technology and its application in advanced bearings[J]. Aviation Precision Manufacturing Technology, 2017, 53(1): 1-6 (in Chinese). | |
4 | 国家自然科学基金委员会. 关于发布航空发动机高温材料/先进制造及故障诊断科学基础重大研究计划2021年度项目指南的通告[EB/OL]. (2021-08-05)[2023-12-13]. . |
NATIONAL NATURE SCIENCE FOUNDATION OF CHINA. Notice on the publication of the 2021 annual project guidelines for the major research programme on high temperature materials/advanced manufacturing and fault diagnosis science for aero engines[EB/OL]. (2021-08-05)[2023-12-13]. . | |
5 | 丁文锋, 李敏, 李本凯, 等. 难加工金属材料磨削加工表面完整性研究进展[J]. 航空材料学报, 2021, 41(4): 36-56. |
DING W F, LI M, LI B K, et al. Recent progress on surface integrity of grinding difficult-to-cut metal materials[J]. Journal of Aeronautical Materials, 2021, 41(4): 36-56 (in Chinese). | |
6 | 陈志同, 朱燏, 张云, 等. 整体叶盘超硬磨料砂轮数控磨削加工技术[J]. 航空制造技术, 2018, 61(19): 64-72. |
CHEN Z T, ZHU Y, ZHANG Y, et al. CNC grinding technology with super-abrasive grinding wheels for blisk[J]. Aeronautical Manufacturing Technology, 2018, 61(19): 64-72 (in Chinese). | |
7 | 肖贵坚, 黄云, 伊浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016, 37(5): 1666-1676. |
XIAO G J, HUANG Y, YI H, et al. Experimental research of new belt grinding method for consistency of blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1666-1676 (in Chinese). | |
8 | 黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40(3): 53-72. |
HUANG Y, XIAO G J, ZOU L, et al. Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 53-72 (in Chinese). | |
9 | FU Y Z, GAO H, WANG X P, et al. Machining the integral impeller and blisk of aero-engines: a review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 528-543. |
10 | 夏楠, 马小刚, 吴传宗, 等. 磁力研磨工艺提高叶片表面质量的试验研究[J]. 表面技术, 2023, 52(2): 67-77. |
XIA N, MA X G, WU C Z, et al. Experimental investigation of magnetic finishing for improving blade surface quality[J]. Surface Technology, 2023, 52(2): 67-77 (in Chinese). | |
11 | 杜兆伟, 陈燕, 周锟, 等. 磁力研磨法对整体叶盘的抛光工艺研究[J]. 航空制造技术, 2015(20): 93-95, 100. |
DU Z W, CHEN Y, ZHOU K, et al. Study on blisk surface polishing by magnetic abrasive finishing[J]. Aeronautical Manufacturing Technology, 2015(20): 93-95, 100 (in Chinese). | |
12 | 李秀红, 王嘉明, 李文辉, 等. 航空发动机铣削叶片抛磨技术研究现状及其发展趋势[J]. 机械科学与技术, (2022-06-17)[2023-12-13]. . |
LI X H, WANG J M, LI W H, et al. Research status and development trend of aero-engine milling blade polishing technology[J]. Mechanical Science and Technology for Aerospace Engineering, (2022-06-17)[2023-12-13]. . | |
13 | 李文辉, 温学杰, 李秀红, 等. 整体叶盘抛磨技术研究现状及其发展趋势[J]. 航空制造技术, 2022, 65(17): 88-102. |
LI W H, WEN X J, LI X H, et al. Research status and development trend of blisk polishing technology[J]. Aeronautical Manufacturing Technology, 2022, 65(17): 88-102 (in Chinese). | |
14 | CARIAPA V, PARK H, KIM J, et al. Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(1-2): 92-106. |
15 | 杨胜强,李文辉,李秀红,等. 高性能零件滚磨光整加工的研究进展[J]. 表面技术, 2019, 48(10): 13-24. |
YANG S Q, LI W H, LI X H, et al. Research development of mass finishing for high-performance parts[J]. Surface Technology, 2019, 48(10): 13-24 (in Chinese). | |
16 | 杨胜强,李文辉,陈红玲, 等. 表面光整加工理论与新技术[M]. 北京: 国防工业出版社, 2011: 52-163. |
YANG S Q, LI W H, CHEN H L, et al. Surface finishing theory and new technology[M]. Beijing: National Defense Industry Press, 2011: 52-163 (in Chinese) | |
17 | HASHIMOTO F, YAMAGUCHI H, KRAJNIK P, et al. Abrasive fine-finishing technology[J]. CIRP Annals - Manufacturing Technology, 2016, 65(2): 597-620. |
18 | BIXBY F N. Improvement in tumbling-barrels for cleaning casting: America. ZL137409[P]. 1873-04-01. |
19 | MOORE R W. Vibratory finishing: America. ZL3063207[P]. 1960-01-27. |
20 | RAY A. Improvements in and relating to vibratory mills: Britain. ZL905281[P]. 1960-09-05. |
21 | GILLESPIE L K. Mass finishing handbook[M]. Norwalk: Industrial Press, 2007:111-145. |
22 | HOLZKNECHT E. Everything you need to know about mechanical/mass finishing[J]. Metal Finishing, 2009, 107(5): 27-31. |
23 | HASHIMOTO F, DEBRA D B. Modelling and optimization of vibratory finishing process[J]. CIRP Annals, 1996, 45(1): 303-306. |
24 | YABUKI A, BAGHBANAN M R, SPELT J K. Contact forces and mechanisms in a vibratory finisher[J]. Wear, 2002, 252(7): 635-643. |
25 | CIAMPINI D, PAPINI M, SPELT J K. Impact velocity measurement of media in a vibratory finisher[J]. Journal of Materials Processing Technology, 2007, 183(2): 347-357. |
26 | 李秀红, 李文辉, 杨胜强, 等. 一种用于叶片表面加工的组合封闭型腔振动式滚磨光整加工装置及其方法: ZL 201911003324.X[P]. 2021-05-28. |
LI X H, LI W H, YANG S Q, et al. A combined closed cavity vibratory finishing device and method for blade surface processing: China. ZL 201911003324.X [P]. 2021-05-28 (in Chinese). | |
27 | 李秀红, 王德龙, 马晓龙, 等.一种用于环形机匣多谐无芯激振抛磨的颗粒流场创成方法: ZL202310727702.9[P]. 2023-07-21. |
LI X H, WANG D L, MA X L, et al. A particle flow field generation method for multi harmonic coreless vibration finishing of annular casing: China. ZL202310727702.9[P]. 2023-07-21 (in Chinese). | |
28 | WANG J M, LI X H, LI W H, et al. Convection and motion characteristics of granular media in horizontal vibratory finishing[J]. Granular Matter, 2023, 25(4):1-25. |
29 | HASHEMNIA K, MOHAJERANI A, SPELT J K. Development of a laser displacement probe to measure particle impact velocities in vibrationally fluidized granular flows[J]. Powder Technology, 2013, 235: 940-952. |
30 | LI X H, WU F F, LI W H, et al. Kinematic characteristics of mass finishing process with the parallel spindle: Velocity measurement and analysis of the media[J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12. |
31 | FLEISCHHAUER E, AZIMI F, TKACIK P, et al. Application of particle image velocimetry (PIV) to vibrational finishing[J]. Journal of Materials Processing Technology, 2016, 229: 322-328. |
32 | KEANINI R G, TKACIK P T, FLEISCHHAUER E, et al. Macroscopic liquid-state molecular hydrodynamics[J]. Scientific Reports, 2017, 7(1): 41658. |
33 | TAN K L, NEOH E T, LIFTON J J, et al. Internal measurement of media sliding velocity in a stream finishing bowl[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(7-8): 4681-4691. |
34 | SUTOWSKI P, PLICHTA J, KALDUNSKI P. Determining kinetic energy distribution of the working medium in a centrifugal disc finishing process—part 1: theoretical and numerical analysis with DEM method[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 1345-1355. |
35 | SUTOWSKI P, PLICHTA J, KALDUNSKI P. Determining kinetic energy distribution of the working medium in a centrifugal disc finishing process—part 2: experimental analysis with the use of acoustic emission signal[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 687-704. |
36 | 李文辉, 郝志明, 李秀红, 等. 一种用于标定滚抛磨块摩擦系数的方法: ZL 201710635914.9[P]. 2019-08-16. |
LI W H, HAO Z M, LI X H, et al. A method for calibrating the friction coefficient of granular media: China. ZL201710635914.9[P]. 2019-08-16 (in Chinese). | |
37 | LI W H, ZHANG L, LI X H, et al. Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: Kinematics mechanism and distribution characteristics[J]. Powder Technology, 2017, 318: 518-527. |
38 | MULLANY B, SHAHINIAN H, NAVARE J, et al. The application of computational fluid dynamics to vibratory finishing processes[J]. CIRP Annals, 2017, 66(1): 309-312. |
39 | HASHEMNIA K, SPELT J K. Particle impact velocities in a vibrationally fluidized granular flow: Measurements and discrete element predictions[J]. Chemical Engineering Science, 2014, 109(1): 123-135. |
40 | HASHEMNIA K, SPELT J K. Finite element continuum modeling of vibrationally-fluidized granular flows[J]. Chemical Engineering Science, 2015, 129: 91-105. |
41 | WINDOWS-YULE C R K, LANCHESTER E, MADKINS D, et al. New insight into pseudo-thermal convection in vibrofluidised granular systems[J]. Scientific Reports, 2018, 8(1): 12811-12859. |
42 | KOU B Q, CAO Y X, LI J D, et al. Granular materials flow like complex fluids[J]. Nature, 2017, 551(7680): 360-363. |
43 | SOOD A, MULLANY B. Advanced surface analysis to identify media-workpiece contact modes in a vibratory finishing processes[J]. Procedia Manufacturing, 2021, 53: 155-161. |
44 | HASHIMOTO Y, ITO T, NAKAYAMA Y, et al. Fundamental investigation of gyro finishing experimental investigation of contact force between cylindrical workpiece and abrasive media under dry condition[J]. Precision Engineering, 2021, 67: 123-136. |
45 | WANG J M, LI X H, LI W H, et al. Research of horizontal vibratory finishing for aero-engine blades: movement characteristics and action behavior of media[J]. International Journal of Advanced Manufacturing Technology, 2023, 126(5-6): 2065-2081. |
46 | LACHENMAIER M, DEHMER A, TRAUTH D, et al. Influence of different input parameters on the contact conditions determing the surface integrity of workpieces in an unguided vibratory finishing process[J]. Procedia CIRP, 2018, 71: 53-58. |
47 | WANG S W, CHEN J H, LIU Z G, et al. Novel contact force measurement in vibratory finishing[J]. Powder Technology, 2023, 415: 118158. |
48 | UHLMANN E, EULITZ A. Influence of ceramic media composition on material removal in vibratory finishing[J]. Procedia CIRP, 2018, 72: 1445-1450. |
49 | LI X H, LI W H, YANG S Q, et al. Study on polyurethane media for mass finishing process: Dynamic characteristics and performance[J]. International Journal of Mechanical Sciences, 2018, 138-139: 250-261. |
50 | 韩锐, 李秀红, 王嘉明, 等. 水平强制振动光整加工对TC4钛合金表面完整性参数的影响[J]. 中国机械工程, 2023, 34(17): 2037-2047. |
HAN R, LI X H, WANG J M, et al. Horizontal forced vibration finishing of TC4 titanium alloy effect of surface integrity parameters[J]. China Mechanical Engineering, 2023, 34(17): 2037-2047 (in Chinese). | |
51 | MALKORRA I, SALVATORE F, ARRAZOLA P, et al. The influence of the process parameters of drag finishing on the surface topography of aluminium samples[J]. CIRP Journal of Manufacturing Science and Technology. 2020, 31: 200-209. |
52 | UHLMANN E, DETHLEFS A, EULITZ A. Investigation of material removal and surface topography formation in vibratory finishing[J]. Procedia CIRP, 2014, 14: 25-30. |
53 | KOPP M, UHLMANN E. Prediction of the roughness reduction in centrifugal disc finishing of additive manufactured parts based on discrete element method[J]. Machines, 2022, 10: 1151. |
54 | BARLETTA M, PIETROBONO F, RUBINO G, et al. Drag finishing of sensitive workpieces with fluidized abrasives[J]. Journal of Manufacturing Processes, 2014, 16(4): 494-502. |
55 | LV D J, WANG Y G, YU X, et al. Analysis of abrasives on cutting edge preparation by drag finishing[J]. International Journal of Advanced Manufacturing Technology, 2022, 119(5-6): 3583-3594. |
56 | BENJARUNGROJ P, HARRISON P, VAUGHAN S, et al. Investigation of thermally treated recyled glass as a vibratory mass finishing media[J]. Precision Machining, 2012, 496: 104-109. |
57 | FRANCIS N K, VISWANADHAN K G, PAULOSE M M. SAFBM of softer materials: An investigation into the micro-cutting mechanisms and the evolution of roughness profile[J]. Materials and Manufacturing Processes, 2016, 31(7): 969-975. |
58 | WANG S, TIMSIT R S, SPELT J K. Experimental investigation of vibratory finishing of aluminum[J]. Wear, 2000, 243(1): 147-156. |
59 | BAGHBANAN M R, YABUKI A, TIMSIT R S, et al. Tribological behavior of aluminum alloys in a vibratory finishing process[J]. Wear, 2003, 255(7): 1369-1379. |
60 | SHI H T, YANG S Q, LI X H, et al. Material removal mechanism of aluminium alloy in barrel finishing under grinding fluid[J]. Materials and Manufacturing Processes, 2021, 36(9): 1049-1059. |
61 | 石慧婷, 杨胜强, 李秀红, 等. 含双氧水磨液对铝合金滚磨光整加工的影响[J]. 表面技术, 2020, 49(4): 38-46. |
SHI H T, YANG S Q, LI X H, et al. Influence of grinding liquid containing hydrogen peroxide on aluminium alloy in barrel finishing[J]. Surface Technology, 2020, 49(4): 38-46 (in Chinese). | |
62 | 石慧婷, 李秀红, 杨胜强, 等. 三乙醇胺对铝合金试件滚磨光整加工作用的影响分析[J]. 表面技术. 2018, 47(10): 295-301. |
SHI H T, LI X H, YANG S Q, et al. Discussion on influence of triethanolamine to alumimum alloy specimen in barrel finishing[J]. Surface Technology, 2018, 47(10): 295-301 (in Chinese). | |
63 | SUNDARARAJAN G. A comprehensive model for the solid particle erosion of ductile materials[J]. Wear, 1991, 149(1-2): 111-127. |
64 | SOORAJ V S, RADHAKRISHNAN V. Elastic impact of abrasives for controlled erosion in fine finishing of surfaces[J]. Journal of Manufacturing Science and Engineering, 2013, 135(5): 1-12. |
65 | BARLETTA M, RUBINO G, VALENTINI P. Experimental investigation and modeling of fluidized bed assisted drag finishing according to the theory of localization of plastic deformation and energy absorption[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(9-12): 2165-2180. |
66 | MALKORRA I, SOULI H, CLAUDIN C, et al. Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model[J]. International Journal of Machine Tools and Manufacture, 2021, 168(Part A): 103779. |
67 | DOMBLESKY J, EVANS R, CARIAPA V. Material removal model for vibratory finishing[J]. International Journal of Production Research, 2004, 42(5): 1029-1041. |
68 | ZANGER F, KACARAS A, NEUENFELDT P, et al. Optimization of the stream finishing process for mechanical surface treatment by numerical and experimental process analysis[J]. CIRP Annals, 2019, 68(1): 373-376. |
69 | MAKIUCHI Y, HASHIMOTO F, BEAUCAMP A. Model of material removal in vibratory finishing, based on Preston’s law and discrete element method[J]. CIRP Annals, 2019, 68(1): 365-368. |
70 | 王程伟, 李秀红, 李文辉, 等. 湿式主轴式滚磨光整加工中铝合金试件的材料去除行为研究[J]. 表面技术, 2019, 48(9): 307-314. |
WANG C W, LI X H, LI W H, et al. Material removal behavior of aluminum alloy workpiece in wet spindle barrel finishing process[J]. Surface Technology, 2019, 48(9): 307-314 (in Chinese). | |
71 | HASHIMOTO F, JOHNSON S P, CHAUDHARI R G. Modeling of material removal mechanism in vibratory finishing process[J]. CIRP Annals, 2016, 65(1): 325-328. |
72 | WANG N, YANG S Q, ZHAO T T, et al. Amending research on the expression of the contact force of the spindle barrel finishing based on EDEM simulation[J]. Chinese Journal of Mechanical Engineering, 2020, 33(6): 115-127. |
73 | MA S W, WU K C, WAN S, et al. Numerical simulation and experimental study of normal force and particle speed in the robotic stream finishing process[J]. Journal of Manufacturing Processes, 2023, 98: 1-18. |
74 | WAN S, LIU Y C, WOON K S, et al. A material removal and surface roughness evolution model for loose abrasive polishing of free form surfaces[J]. International Journal of Abrasive Technology, 2014, 6(4): 269-285. |
75 | WAN S, LIU Y C, WOON K S, et al. A simple general process model for vibratory finishing[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9-12): 2393-2400. |
76 | SUN Y Q, YAO C F, TAN L, et al. Experimental investigation on surface roughness of Ti-17 milling and vibration finishing composite manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(11-12): 8019-8038. |
77 | WANG N, ZHAO T T, YANG S Q, et al. Experiment and simulation analysis on the mechanism of the spindle barrel finishing[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(1-2): 57-74. |
78 | 《航空制造工程手册》总编委会. 航空制造工程手册 发动机机械加工[M]. 北京: 航空工业出版社, 2016:719-1144. |
Editorial board of aviation manufacturing engineering manual. Aviation manufacturing engineering manual engine mechanical processing[M]. Beijing: Aviation Industry Press, 2016: 719-1144 (in Chinese). | |
79 | 孙玉民, 康靖宇, 宋亮鹏, 等. 机匣类零件数控磨抛加工技术研究[J]. 中国新技术新产品, 2021, 3(5): 74-76 |
SUN Y M, KANG J Y, SONG L P, et al. Research on CNC grinding and polishing technology for gearbox parts[J]. New Technology & New Products of China, 2021, 3(5): 74-76 (in Chinese). | |
80 | 陈亚莉, 于新峰, 王婷. 浅谈提高某环形机匣合格率的方法[J]. 中国新技术新产品, 2021, 9(17): 82-84. |
CHEN Y L, YU X F, WANG T. A brief discussion on methods to improve the qualification rate of a certain ring box[J]. New Technology & New Products of China, 2021, 9(17): 82-84 (in Chinese). | |
81 | HAO Y P, YANG S Q, LI X H, et al. Analysis of contact force characteristics of vibratory finishing within pipe-cavity[J]. Granular Matter, 2021, 23(2): 1-14. |
82 | 王旭, 赵萍, 吕冰海, 等. 滚动轴承工作表面超精密加工技术研究现状[J]. 中国机械工程, 2019, 30(11): 1301-1309. |
WANG X, ZHAO P, LV B H, et al. Research status of ultra-precision machining technologies for working surfaces of rolling bearings[J]. China Mechanical Engineering, 2019, 30(11): 1301-1309 (in Chinese). | |
83 | WANG X F, LI X H, LI W H, et al. Advance on surface finishing technology of precision bearing cylindrical rollers[J]. The International Journal of Advanced Manufacturing Technology, (2023-06-12) [2023-12-13]. . |
84 | DAVIDSON D A. Surface finishing reaches new heights[J]. Metal Finishing. 2005, 103(3): 25-28. |
85 | 汪斌, 何坚, 余杰, 等. 高效光饰加工技术在航空发动机典型零件加工中的应用[J]. 金刚石与磨料磨具工程, 2018, 38(3): 75-80. |
WANG B, HE J, YU J, et al. Application of high efficiency polishing technology in manufacturing aero-engine components[J]. Diamond & Abrasives Engineering, 2018, 38(3): 75-80 (in Chinese). | |
86 | 吕彤, 刘国涛. 无余量加工叶片滚磨工艺攻关及设备开发[C]∥2012年中国(国际)光整加工技术及表面工程学术会议论文集. 2012:7-12. |
LV T, LIU G T. Technology research and equipment development of non-allowance machining blade mass finishing[C]∥Proceedings of 2012 China (International) Finishing Technology and Surface Engineering Academic Conference. 2012:7-12 (in Chinese). | |
87 | 刘国涛, 吕彤. 航空发动机叶片表面自由磨具光整加工工艺试验研究[J]. 新技术新工艺, 2013(10): 89-92. |
LIU G T, LV T. Research on experimental process of aero-engine blade surface finishing[J]. New Technology & New Process, 2013(10): 89-92 (in Chinese). | |
88 | 杨印权, 张亚双, 梁巧云. 滚磨光整技术在航空发动机产品制造中的应用研究[J]. 航空制造技术, 2016(11): 69-71. |
YANG Y Q, ZHANG Y S, LIANG Q Y. Research on application of barrel finishing technology in manufacture of aeroengine[J]. Aeronautical Manufacturing Technology, 2016(11): 69-71 (in Chinese). | |
89 | 王丽, 宋成, 李美荣. 航空发动机叶片型面的旋流式光整加工实验研究[J]. 航空精密制造技术, 2012, 48(6): 36-39. |
WANG L, SONG C, LI M R. Experimental study on swirl finishing for blade surface of aero-engine[J]. Aviation Precision Manufacturing Technology, 2012, 48(6): 36-39 (in Chinese). | |
90 | ZHANG J Y, YAO C F, CUI M C, et al. Three-dimensional modeling and reconstructive change of residual stress during machining process of milling, polishing, heat treatment, vibratory finishing, and shot peening of fan blade[J]. Advances in Manufacturing, 2021, 9(3): 430-445. |
91 | 刘随建, 吴伟东. 整体叶盘叶片光饰抛光试验及发展应用探析[J]. 航空制造技术, 2010(5): 84-86. |
LIU S J, WU W D. Research of development and application of polishing test for blisk blade[J]. Aeronautical Manufacturing Technology, 2010(5): 84-86 (in Chinese). | |
92 | 杨万辉, 朱静宇, 陈雷, 等. 整体叶盘疲劳失效分析与抗疲劳强化技术应用[J]. 金属加工(冷加工), 2019(9): 43-46. |
YANG W H, ZHU J Y, CHEN L, et al. Fatigue failure analysis and appication of anti-fatigue strengthening technology for integral blade disk[J]. Metal Working (Metal Cutting), 2019(9): 43-46 (in Chinese). | |
93 | FELDMANN G, WONG C C, WEI W, et al. Application of vibropeening on aero-engine component[J]. Procedia CIRP, 2014, 13: 423-428. |
94 | FELDMANN G, HAUBOLD T. Mechanical surface treatment technologies for improving HCF strength and surface roughness of blisk-rotors[J]. Materials Science Forum, 2013, 768–769: 510–518. |
95 | ALCARAZ J Y, ZHANG J, NAGALINGAM A P, et al. Numerical modeling of residual stresses during vibratory peening of a 3-stage blisk - a multi-scale discrete element and finite element approach[J]. Journal of Materials Processing Technology, 2022, 299: 117383. |
96 | NEBIOLO W P. Isotropic finishing of helicopter and turboprop gearbox components[C]∥ Annual Aerospace/Airline Plating and Metal Finishing Forum, Portland, 2001: 4-11. |
97 | 赵光辉. 齿面各向同性光整工艺对齿面接触疲劳特性影响的研究[D]. 北京: 机械科学研究总院, 2017. |
ZHAO G H. Study on influence of isotropic finishing process on contact fatigue characteristics of gear surface[D]. Beijing: China Academy of Machinery Science & technology, 2017 (in Chinese). | |
98 | 乔金维, 武志斐, 王铁, 等. 振动光饰对齿轮振动特性的影响[J]. 机械传动, 2017, 41(5): 101-105. |
QIAO J W, WU Z F, WANG T, et al. Effect of vibratory finishing on the vibration characteristic of gear[J]. Journal of Mechanical Transmission, 2017, 41(5): 101-105 (in Chinese). | |
99 | MALLIPEDDI D, NORELL M, SOSA M, et al. The effect of manufacturing method and running-in load on the surface integrity of efficiency tested ground, honed and superfinished gears[J]. Tribology International. 2019, 131: 277-287. |
100 | 李文辉, 杨胜强, 李秀红, 等. 一种大中型圆柱齿轮垂直交叉主轴式滚磨光整加工方法: ZL 201610093279.1[P]. 2016-07-06. |
LI W H, YANG S Q, LI X H, et al. A vertical cross spindle mass finishing method for machining large and medium cylindrical gears: China. ZL201610093279.1[P]. 2016-07-06 (in Chinese) | |
101 | 付征宇, 刘青松, 邓明明, 等. 航空齿轮主轴式滚磨光整表面完整性试验研究[J]. 机械传动, 2023, 47(6): 88-93. |
FU Z Y, LIU Q S, DENG M M, et al. Experimental study on the surface integrity of aircraft gears in spindle barrel finishing[J]. Journal of Mechanical Transmission, 2023, 47(6): 88-93 (in Chinese). | |
102 | 张春华, 赵冬梅, 袁仲欣, 等. 航空发动机机匣构件的表面完整性工艺控制[J]. 机械设计与制造, 2015(10): 136-138. |
ZHANG C H, ZHAO D M, YUAN Z X, et al. The craft control of surface integrity of aviation engine’s receiver construction member[J]. Machinery Design & Manufacture, 2015(10): 136-138 (in Chinese). | |
103 | 石海波, 吕彤, 姜豪增, 等. 航空发动机钣焊机匣外表面振动式滚磨光整加工方案及装备研发[J]. 制造业自动化, 2018, 40(1): 65-69. |
SHI H B, LV T, JIANG H Z, et al. Vibratory finishing technology for external surface of sheet welding machine box in aircraft engine and its equipment development[J]. Manufacturing Automation, 2018, 40(1): 65-69 (in Chinese). | |
104 | 邓四二, 滕弘飞, 周彦伟, 等. 航空发动机主轴轴承滚道表面光饰强化处理[J]. 航空动力学报, 2006, 21(3): 545-549. |
DENG S E, TENG H F, ZHOU Y W, et al. Luster polish strengthening for race surface of the mainshaft bearings of aeroengine[J]. Journal of Aerospace Power, 2006, 21(3): 545-549 (in Chinese). | |
105 | 李迎丽, 杜杰. 旋转光饰技术在复杂结构轴承套圈加工中的应用[J]. 轴承, 2022(5): 43-45. |
LI Y L, DU J. Application of rotary polishing technology in processing of bearing rings with complex structure[J]. Bearing, 2022(5): 43-45 (in Chinese). | |
106 | 韩文. 滚动体光饰工艺在实际生产中的应用[J]. 轴承, 2001(8): 21-22, 46. |
HAN W. Application of rolling parts finishing technology in practical production[J]. Bearing, 2001(8): 21-22, 46 (in Chinese). | |
107 | 刘承继, 初振发. 光饰工艺在轴承滚子表面加工中的应用[J]. 轴承工业, 2003(12): 30-32. |
LIU C J, CHU Z F. Application of finishing technology in surface processing of bearing roller[J]. Bearing Industry, 2003(12): 30-32 (in Chinese). | |
108 | 吴广山, 张岩. 光饰工艺在轴承滚子加工中的应用[J]. 哈尔滨轴承, 2005, 26(1): 12-13, 15. |
WU G S, ZHANG Y. Application of polishing technology in bearings roller process[J]. Journal of Harbin Bearing, 2005, 26(1): 12-13, 15 (in Chinese). | |
109 | 王晔, 王玉红, 韩亭鹤, 等. 圆柱滚子倒角精加工工艺改进[J]. 轴承, 2019(10): 15-18, 57. |
WANG Y, WANG Y H, HAN T H, et al. Improvement on finishing technology for chamfer of cylindrical rollers[J]. Bearing, 2019(10): 15-18, 57 (in Chinese). | |
110 | TAN L, YAO C F, ZHANG D H, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades[J]. International Journal of Fatigue, 2020, 136: 105630. |
111 | KOENIG J, KOLLER P, TOBIE T, et al. Influence of additional surface finishing to the material properties and the flank load carrying capacity of case-hardened gears with grinding burn[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2017, 11(6): 1-9. |
112 | ZHANG X H, WEI P T, PARKER R G, et al. Study on the relation between surface integrity and contact fatigue of carburized gears[J]. International Journal of Fatigue, 2022, 165: 107203. |
113 | 李鹏, 李文辉, 李秀红, 等. 航空发动机整体叶盘回转式滚磨光整加工数值模拟与分析[J]. 机械科学与技术, 2021, 40(4): 633-640. |
LI P, LI W, LI X H, et al. Numerical simulation and analysis of rotary-typed mass finishing for aeroengine blisk[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 633-640 (in Chinese). | |
114 | 闫泽昭, 李文辉, 李秀红, 等. 航发叶盘类零件不同抛磨工艺的仿真对比分析[J]. 组合机床与自动化加工技术, 2022(1): 138-143. |
YAN Z Z, LI W H, LI X H, et al. Simulation and comparative analysis of different mass finishing for aeroengine blisk parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(1): 138-143 (in Chinese). | |
115 | 王志成,李文辉,李秀红,等. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析[J]. 金刚石与磨料磨具工程. 2022, 42(5): 617-625. |
WANG Z C, LI W H, LI X H, et al. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk[J]. Diamond & Abrasives Engineering, 2022, 42(5): 617-625 (in Chinese). | |
116 | 李文辉, 杨英波, 杨胜强, 等. 一种高精度齿轮复合振动形性协同抛磨方法及其装置: ZL202310141864.4[P]. 2023-03-24. |
LI W H, YANG Y B, YANG S Q, et al. A compound vibration collaborative manufacturing of shape and performance polishing method and device for high precision gear: China. ZL202310141864.4[P]. 2023-03-24 (in Chinese). | |
117 | YANG Y B, LI W H, WANG X Z, et al. Kinematics and machinability using bidirectional composite vibratory finishing[J]. International Journal of Advanced Manufacturing Technology (2023-1-21) [2023-12-13]. . |
118 | 杨胜强, 李东祥, 姜豪增, 等. 机匣内腔及油路多余物的控制方法: ZL 202110348615.3[P]. 2021-07-06. |
YANG S Q, LI D X, JIANG H Z, et al. Control method of excess material in casing cavity and oil circuit: China. ZL202110348615.3[P]. 2021-07-06 (in Chinese). | |
119 | 杨胜强, 郝玉鹏, 黄辉, 等. 一种用于清理铸造机匣复杂型腔的装置: ZL202211644220.9[P]. 2023-01-20. |
YANG S Q, HAO Y P, HUANG H, et al. A device for cleaning the complex cavity in casting box: China. ZL202211644220.9[P]. 2023-01-20 (in Chinese) | |
120 | HAO Y P, YANG S Q, LI D X, et al. Vibratory finishing for the cavity of aero-engine integral casting casing: mechanism analysis and performance evaluation[J]. International Journal of Advanced Manufacturing Technology, 2023, 125(1-2): 713-729. |
121 | 杨胜强, 李学楠, 陈海滨, 等. 一种用于套圈类零件表面加工的回转式抛磨浮动工装: ZL202211059711.7[P]. 2022-09-01. |
YANG S Q, LI X N, CHEN H B, et al. A rotary polishing floating tool for surface processing of a ring type part: China. ZL202211059711.7[P]. 2022-09-01 (in Chinese). | |
122 | LI X N, YANG S Q, LI X H, et al. A novel rotary barrel finishing approach for high-performance bearing ring surfaces finishing simultaneously via floating clamp[J]. International Journal of Advanced Manufacturing Technology (2022-12-07) [2023-12-13]. . |
123 | 李秀红, 王兴富, 杨英波, 等. 一种用于轴承滚动体表面的多仓超精离心抛磨装置及方法: ZL202210649802.X[P]. 2022-07-08. |
LI X H, WANG X F, YANG Y B, et al. A multi-chamber ultra-fine centrifugal finishing device and method for bearing rolling body surface: China. ZL202210649802.X[P]. 2022-07-08 (in Chinese). |
[1] | 王相宇, 王锦辉, 仇文豪, 牛金涛, 付秀丽, 乔阳. 不同冷却条件下钛铝合金切削加工材料去除机理和加工表面完整性[J]. 航空学报, 2024, 45(13): 629471-629471. |
[2] | 刘宗昊, 王海同, 杨宇伟, 蔡永林. 考虑材料去除效应的五轴铣削变形分析[J]. 航空学报, 2023, 44(13): 427977-427977. |
[3] | 张全利, 储成龙, 翟健超, 王昱凯, 张振, 徐九华. 紫外纳秒脉冲激光烧蚀单晶硅表面特征创成机制[J]. 航空学报, 2022, 43(4): 525341-525341. |
[4] | 贾雨超, 迟关心, 张昆, 张甲, 王振龙. 闭式整体叶盘成组电极高效电弧成形加工技术[J]. 航空学报, 2022, 43(4): 525605-525605. |
[5] | 武鑫磊, 刘永红, 亓梁, 赵莅龙, 纪仁杰. 镍基高温合金电火花辅助电弧高效铣削技术[J]. 航空学报, 2022, 43(4): 525615-525615. |
[6] | 穆宏鹏, 刘志东, 周顺程, 韩云晓, 邱明波. 极间介质模式对放电诱导烧蚀铣削影响[J]. 航空学报, 2022, 43(4): 525609-525609. |
[7] | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587-525587. |
[8] | 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报, 2020, 41(10): 23685-023685. |
[9] | 黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40(3): 22508-022508. |
[10] | 王祥志, 刘志东, 薛荣媛, 田宗军, 黄因慧. 极间自混氧改善钛合金电火花加工特性研究[J]. 航空学报, 2013, 34(10): 2419-2426. |
[11] | 杜随更, 汪志斌, 吕超, 巨江涛, 张静. 高温合金高速铣削表面形貌及组织研究[J]. 航空学报, 2011, 32(6): 1156-1163. |
[12] | 杜随更;吕超;任军学;杨振朝. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008, 30(6): 1710-1715. |
[13] | 万敏;张卫红. 铣削过程中误差预测与补偿技术研究进展[J]. 航空学报, 2008, 29(5): 1340-1349. |
[14] | 万敏;张卫红;谭刚. 薄壁件周铣过程中材料去除效应的快速仿真[J]. 航空学报, 2007, 28(5): 1247-1251. |
[15] | 黄奇;任敬心;张钧澄. 加工表面完整性对GH33A高低周疲劳寿命的影响[J]. 航空学报, 1991, 12(10): 528-531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学