[1] BAI B H, LI X D, CHEN H X. Aerodynamic and aeroacoustics optimization design of multi-element airfoil by a genetic algorithm[C]//25th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2019: 2762. [2] AIGNER B, STUMPF E, HINZ A, et al. An integrated design framework for aircraft with hybrid electric propulsion[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1501. [3] QIU R, XU J P, XIE H P, et al. Carbon tax incentive policy towards air passenger transport carbon emissions reduction[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102441. [4] SOBIERALSKI J B, HUBBARD S M. The effect of jet fuel tax changes on air transport, employment, and the environment in the US[J]. Sustainability, 2020, 12(8): 3352. [5] MURRIETA-MENDOZA A, BOTEZ R M. Commercial aircraft trajectory optimization to reduce flight costs and pollution: Metaheuristic algorithms[M]. Berlin:Springer, 2020: 33-62. [6] LIM Y, GARDI A, SABATINI R, et al. Optimal energy-based 4D guidance and control for terminal descent operations[J]. Aerospace Science and Technology, 2019, 95: 105436. [7] 唐建军, 郭卫东, 徐东光, 等. 飞机电动滑行系统驱动特性及节能减排性能分析[J]. 北京航空航天大学学报, 2020, 46(8): 1545-1554. TANG J J, GUO W D, XU D G, et al. Driving characteristics and energy saving and emission reduction performance of aircraft electric taxiing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1545-1554 (in Chinese). [8] JANIC' M. An assessment of the potential of alternative fuels for "greening" commercial air transportation[J]. Journal of Air Transport Management, 2018, 69: 235-247. [9] ICAO. 2019 environmental report: Aviation and environment:19/09/11-01[R]. Montréal: International Civil Aviation Organization, 2019. [10] SOLER M, OLIVARES A, STAFFETTI E, et al. Framework for aircraft trajectory planning toward an efficient air traffic management[J]. Journal of Aircraft, 2012, 49(1): 341-348. [11] CLARKE J P B, HO N T, REN L, et al. Continuous descent approach: Design and flight test for Louisville International Airport[J]. Journal of Aircraft, 2004, 41(5): 1054-1066. [12] VILLEGAS DÍAZ M, GóMEZ COMENDADOR V F, GARCÍA-HERAS CARRETERO J, et al. Environmental benefits in terms of fuel efficiency and noise when introducing continuous climb operations as part of terminal airspace operation[J]. International Journal of Sustainable Transportation, 2020, 14(12): 903-913. [13] SÁEZ R, DALMAU R, PRATS X. Optimal assignment of 4D close-loop instructions to enable CDOs in dense TMAs[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018: 1-10. [14] 李东亚, 胡荣, 张军峰, 等. 航空器持续下降进近技术的发展现状与展望[J]. 航空计算技术, 2016, 46(5): 131-134. LI D Y, HU R, ZHANG J F, et al. Review and prospects on continuous descent approach technology of aircraft[J]. Aeronautical Computing Technique, 2016, 46(5): 131-134 (in Chinese). [15] 王建忠, 王超, 张宝成. 基于点融合进近的航空器进场4D航迹规划[J]. 科学技术与工程, 2017, 17(14): 333-337. WANG J Z, WANG C, ZHANG B C. 4D trajectory planning method for arrivals based on merging point approach[J]. Science Technology and Engineering, 2017, 17(14): 333-337 (in Chinese). [16] ERRICO A, VITO V D. Aircraft operating technique for efficient sequencing arrival enabling environmental benefits through CDO in TMA[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019. [17] 杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2):324157.YANG L, LI W B, LIU F Z, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324157 (in Chinese). [18] LOVEGREN J A A. Estimation of potential aircraft fuel burn reduction in cruise via speed and altitude optimization strategies:ICAT-2011-03[R]. Cambridge: MIT International Center for Air Transportation (ICAT), 2015. [19] WILLIAMS V, NOLAND R B, TOUMI R. Air transport cruise altitude restrictions to minimize contrail formation[J]. Climate Policy, 2003, 3(3): 207-219. [20] 王宇, 杨振博, 余雄庆, 等. 考虑风场、雷雨区的下一代客机轨迹多目标优化[J]. 航空计算技术, 2019, 49(2): 19-23. WANG Y, YANG Z B, YU X Q, et al. Multi-objective optimization of next Gen transport trajectory considering wind field and thunderstorm area[J]. Aeronautical Computing Technique, 2019, 49(2): 19-23 (in Chinese). [21] HARTJES S, VISSER H G, HUBAR M E G. Trajectory optimization of extended formation flights for commercial aviation[J]. Aerospace, 2019, 6(9): 100. [22] TIAN Y, HE X Q, XU Y, et al. 4D trajectory optimization of commercial flight for green civil aviation[J]. IEEE Access, 2020, 8: 62815-62829. [23] HARADA A, EZAKI T, WAKAYAMA T, et al. Air traffic efficiency analysis of airliner scheduled flights using collaborative actions for renovation of air traffic systems open data[J]. Journal of Advanced Transportation, 2018, 2018: 2734763. [24] WICKRAMASINGHE N K, BROWN M, HIRABAYASHI H, et al. Feasibility study on constrained optimal trajectory application in the Japanese airspace[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017. [25] GARCÍA-HERAS J, SOLER M, SÁEZ F J. Collocation methods to minimum-fuel trajectory problems with required time of arrival in ATM[J]. Journal of Aerospace Information Systems, 2016, 13(7): 243-265. [26] DALMAU R, PRATS X. Controlled time of arrival windows for already initiated energy-neutral continuous descent operations[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 334-347. [27] GARCÍA-HERAS J, SOLER M, SÁEZ F J. A comparison of optimal control methods for minimum fuel cruise at constant altitude and course with fixed arrival time[J]. Procedia Engineering, 2014, 80: 231-244. [28] MENDOZA A M, BUNEL A, BOTEZ R M. Aircraft vertical reference trajectory optimization with a RTA constraint using the ABC algorithm[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 4208. [29] GU R P, YUAN J, HAN X L, et al. Flight performance optimization considering environmental impact under multi-RTA constraints[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 964-977. [30] DALMAU R, ALENKA J, PRATS X. Combining the assignment of pre-defined routes and RTAs to sequence and merge arrival traffic[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017. [31] EUROCONTROL. Experimental Centre. User Manual for the base of aircraft data (BADA), Revision 3.11: 13/04/16-01[R]. Brussels: EEC, 2013. [32] GLOVER W, LYGEROS J. Simplified multi-aircraft models for conflict detection and resolution algorithms[J]. Computer, 2004(1): 1-28. [33] STENGEL R F. Flight Dynamics[M]. Princeton: Princeton University Press, 2015. [34] AYO B S. An improved genetic algorithm for flight path re-routes with reduced passenger impact[J]. Journal of Computer and Communications, 2017, 5(7): 65-75. [35] MIRJALILI S. Genetic algorithm[M].Evolutionary Algorithms and Neural Networks. Berlin: Springer, 2019: 43-55. [36] LI F F, LI Z Z. Research on rapid planning of intelligent aircraft trajectory under multiple constraints[J]. Journal of Physics: Conference Series, 2020, 1592(1): 012021. [37] JONES D F, MIRRAZAVI S K, TAMIZ M. Multi-objective meta-heuristics: an overview of the current state-of-the-art[J]. European Journal of Operational Research, 2002, 137(1): 1-9. [38] ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195. [39] PSIAKI M L. Backward-smoothing extended Kalman filter[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 885-894. [40] RUIZ S, GUICHARD L, PILON N, et al. A new air traffic flow management user-driven prioritisation process for low volume operator in constraint: simulations and results[J]. Journal of Advanced Transportation, 2019, 2019: 1208279. [41] LIU F Z. Estimating aircraft fuel consumption using radar tracks data[J]. International Journal of Performability Engineering, 2018: 14(10): 2249-2260. [42] YU X B, LU Y Q, YU X R. Evaluating multiobjective evolutionary algorithms using MCDM methods[J]. Mathematical Problems in Engineering, 2018, 2018: 9751783. |