[1] SAMET A, PABLO C, HANAN S. Predicting estimated time of arrival for commercial flights[C]//Proceedings of the 24th ACM SIGKDD international Conference on Knowledge Discovery & Data Mining. London:ACM, 2018:19-23. [2] 林友芳,康友隐,万怀宇,等.基于深度时空卷积网络的民航需求预测[J].北京交通大学学报,2018,42(2):1-8. LIN Y F,KANG Y Y,WAN H Y, et a1. Deep sptio-temporal convolutional networks for flight requirements prediction[J]. Journal of Beijing Jiaotong University,2018, 42(2):1-8(in Chinese). [3] MUKHERJEE A, HANSEN M.A. Dynamic rerouting model for air traffic flow management[J]. Transportation Research Part B(Methodological), 2009,43(1):159-171. [4] 杜文博.面向航空交通系统的复杂网络与网络动力学研究[D].合肥:中国科学技术大学,2010. DU W B. Research on complex network and network dynamics for air transportation systems[D]. Hefei:University of Science and Technology of China, 2010(in Chinese). [5] 袁立罡.终端区动态交通特征与运行态势研究[D].南京:南京航空航天大学,2016. YUAN L G. Research on dynamic traffic characteristics and operation situation of terminal area[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese). [6] MAYARA C R M, HANSMAN R J, LI L S, et al. 2018. Flight trajectory data analytics for characterization of air traffic flows:A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C:Emerging Technologies,2018,97:324-347. [7] 叶博嘉.基于多Agent的空中交通协同流量管理研究[D].南京:南京航空航天大学,2013. YE J B. Research on collaborative air traffic flow management based upon multi-agent modeling and simulation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). [8] JARVIS P A,WOLFE S R, MAARTEN S, et al. Agent-based modeling and simulation of collaborative air traffic flow management using brahms[J]. SAE International Journal of Aerospace, 2010, 3(1):39-45. [9] XU X H, YAO Y. Application of genetic algorithm to aircraft sequencing in terminal area[J]. Journal of Traffic and Transportation Engineering, 2004,4(3):121-126. [10] ROBOLLO J, BRINTON C. BROWNIAN. Motion delay model for the integration of multiple traffic management initiatives[C]//Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar. Lisbon:Eurocontrol,2015:5-15. [11] CRUCIOL L L B V, LI W G. Air holding problem solving by reinforcement learning to reduce the congestion in airspace sectors[C]//Proceedings of the 2012 International Conference on Artificial Intelligence. Toronto:AAAI, 2012:272-278. [12] 李国杰. 大数据研究的科学价值[J]. 计算机学会通讯, 2012, 8(9):8-15. LI G J. Scientific value of big data research[J]. Communications of the CCF, 2012, 8(9):8-15(in Chinese). [13] 李诚龙,屈文秋,李彦冬,等.面向eVTOL航空器的城市空中运输交通管理综述[J].交通运输工程学报,2020,20(4):35-54. LI C L, QU W Q, LI D Y, et a1. Overview of traffic management of urban air mobility (UAM) with eVOTL aircraft[J]. Journal of traffic and transportation engineering, 2020,20(4):35-54(in Chinese). [14] ZHANG J, ZHENG Y, QI D, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259:147-166. [15] 张洪海,廖志华,张启钱,等.终端区空域结构调整对进场交通流的影响[J].交通运输工程学报,2016,16(2):100-108. ZHANG H H, LIAO Z H, ZHANG Q Q, et al. Impact of adjusting airspace structure on arrival traffic flow in terminal area[J].Journal of Traffic and Transportation Engineering,2016,16(2):100-108(in Chinese). [16] 韦伟. 基于实测数据的道路交通状态特征及拥堵传播规律分析方法[D]. 北京:北京交通大学, 2017. WEI W. Analytical method of traffic condition characteristics and congestion propagation rules based on practical measured data[D]. Beijing:Beijing Jiaotong University, 2017(in Chinese). [17] 全权, 李刚, 柏艺琴, 等.低空无人机交通管理概览与建议[J].航空学报, 2020, 41(1):023238. QUAN Q, LI G, BAI Y Q, et a1. Low altitude UAV traffic management:An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica,2020, 41(1):023238(in Chinese). [18] 汤锦辉,王冲,程晓航, 等.基于多智能体的空中交通管理智能技术[J].指挥信息系统与技术,2016,7(6):17-23. TANG J H, WANG C, CHENG X H, et a1. Intelligent technology for air traffic management based on multi-agent systems[J]. Command Information System and Technology, 2016, 7(6):17-23(in Chinese). [19] BRITTAIN M, WEI P. Autonomous air traffic controller:A deep multi-agent reinforcement learning approach[DB/OL]. arXiv preprint arXiv:1905.01303, 2019. [20] 孙长银, 穆朝絮.多智能体深度强化学习的若干关键科学问题[J].自动化学报, 2020, 46(7):1301-1312. SUN C Y, MU C X. Important scientific problems of multi-agent deep reinforcement learning[J]. Acta Automatica Sinica, 2020, 46(7):1301-1312(in Chinese). [21] 杜威,丁世飞.多智能体强化学习综述[J].计算机科学,2019,46(8):1-8. DU W, DING S F. Overview on multi-agent reinforcement learning[J]. Computer Science, 2019, 46(8):1-8(in Chinese). |