[1] POTAPOVA A A, STOLYAROV V V. Deformability and structural features of shape memory TiNi alloys processed by rolling with current[J]. Materials Science and Engineering:A, 2013, 579:114-117. [2] 丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1):021201. DING J H, LI H, BIAN T J, et al. Electroplasticity and electrically-assisted forming:A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021201(in Chinese). [3] PERKINS T A, KRONENBERGER T J, ROTH J T. Metallic forging using electrical flow as an alternative to warm/hot working[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1):84-94. [4] 刘泾源. 脉冲电流在轻合金超塑变形中的宏微观作用机制[D]. 哈尔滨:哈尔滨工业大学, 2015:44-50. LIU J Y. Effect of electric current on micro-macro mechanism of light alloy superplastic deformation[D]. Harbin:Harbin Institute of Technology, 2015:44-50(in Chinese). [5] JONES J. Flow behavior modeling and process control of electrically-assisted forming for sheet metals in uniaxial tension[D]. Clemson:Clemson University, 2012:1-24. [6] SÁNCHEZ EGEA A J, GONZáLEZ ROJAS H A, CELENTANO D J, et al. Mechanical and metallurgical changes on 308L wires drawn by electropulses[J]. Materials & Design, 2016, 90:1159-1169. [7] 郭云力. 碳纤维增强树脂基复合材料的雷击防护[D]. 济南:山东大学, 2019:5-55. GUO Y L. Lightning strike protection of carbon fiber reinforced polymer composites[D]. Jinan:Shandong University, 2019:50-55(in Chinese). [8] 李健芳, 郭鸿俊, 高杨, 等. MT300/802双马树脂基复合材料固化工艺及高温力学性能[J]. 宇航材料工艺, 2019, 49(4):34-40. LI J F, GUO H J, GAO Y, et al. Curing process and high temperature mechanical properties of MT300/802 bismaleimide matrix composites[J]. Aerospace Materials & Technology, 2019, 49(4):34-40(in Chinese). [9] 高俊杰, 俞继军, 韩海涛, 等. 树脂基烧蚀材料细观传热特性预测[J]. 航空学报, 2017, 38(S1):721512. GAO J J, YU J J, HAN H T, et al. Prediction of meso-heat transfer characteristics of resin-based ablative materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721512(in Chinese). [10] HOLM R. Constriction resistance of an assembly of elongated A-spots[C]//Proceedings of ICEC, 1970:16-18. [11] SAWADA S, SHIMIZU K, HATTORI Y, et al. Analysis of contact resistance behavior for electric contacts with plating layer[C]//2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. Piscataway:IEEE Press, 2010:1-8. [12] THOMAS T R, PROBERT S D. Establishment of contact parameters from surface profiles[J]. Journal of Physics D:Applied Physics, 1970, 3(3):277-289. [13] 钛和钛合金铆钉. 第3部分:平锥头铆钉:GJB 120.3A-2006[S]. 北京:总装备部军标出版发行部,2006. Titanium and titanium alloy rivets. Part 3:Flat cone-head rivets:GJB 120.3A-2006[S]. Beijing:Military Standard Publishing Department of the General Armament Department,2006. [14] 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2):301-308. DING N, ZHAO B, LIU Z Q, et al. Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):301-308(in Chinese). [15] 汪鑫伟. AZ31镁合金电流辅助微成形建模及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2016:41-42. WANG X W. Modeling and mechanism of electrically-assisted micro-forming for AZ31 magnesium alloy[D]. Harbin:Harbin Institute of Technology, 2016:41-42(in Chinese). [16] WANG X W, XU J, SHAN D B, et al. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension[J]. International Journal of Plasticity, 2016, 85:230-257. [17] 白生天. 高分子材料的电阻热铆焊工艺及机理研究[D]. 兰州:兰州理工大学, 2016:41-47. BAI S T. Study on resistance hot-driven rivet-welding connection of thermoplastic polymer[D]. Lanzhou:Lanzhou University of Technology, 2016:41-47(in Chinese). [18] ROSHCHUPKIN V V, SEMASHKO N A, KRUPSKII R F, et al. Temperature and strain changes in VT20 titanium alloy under electric-pulse effect[J]. High Temperature, 2003, 41(5):633-638. [19] HOC N Q, TINH B D, HIEN N D. Influence of temperature and pressure on the electrical resistivity of gold and copper up to 1350 K and 100 GPa[J]. Materials Research Bulletin, 2020, 128:110874. [20] FENG K, YANG Y, SHEN B, et al. Rapid sintering of iron powders under action of electric field[J]. Powder Metallurgy, 2005, 48(2):203-204. [21] 国防科学技术工业委员会. HB/Z 223.3-2003飞机装配工艺第3部分:普通铆接[S]. 北京:中国航空综合技术研究所, 2003:8-9. National Defense Science, Technology and Industry Committee. HB/Z 223.3-2003 Aircraft assembly process part 3:Ordinary riveting[S]. Beijing:China Aviation Technology Research Institute, 2003:8-9(in Chinese). [22] 国防科学技术工业委员会. 飞机装配工艺第21部分:复合材料的铆接:HB/Z 223.21-2003[S]. 北京:中国航空综合技术研究所, 2003:7-8. National Defense Science, Technology and Industry Committee. Aircraft assembly process part 21:Riveting of composite materials:HB/Z 223.21-2003[S]. Beijing:China Aviation Technology Research Institute, 2003:7-8(in Chinese). |