[1] MARCO G, VITTORIO L, QUIRICO S, et al. In-process monitoring of selective laser melting:Spatial detection of defects via image data analysis[J]. Journal of Manufacturing Science and Engineering,2017,139(5):051001. [2] KAHNERT M, LUTZMANN S, ZAEH M F. Layer formations in electron beam sintering[C]//Solid Freeform Fabrication Symposium. 2007:88-99. [3] Z? H M F, LUTZMANN S. Modelling and simulation of electron beam melting[J]. Production Engineering, 2010,4(1):15-23. [4] RAUSCH A M, KVNG V E, POBEL C, et al. Predictive simulation of process windows for powder bed fusion additive manufacturing:influence of the powder bulk density[J]. Materials,2017,10(10):1117. [5] MURR L E, MARTINEZ E, GAYTAN S M, et al. Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting[J]. Metallurgical and Materials Transactions A, 2011,42(11):3491-3508. [6] CUNNINGHAM R, NARRA S P, OZTURK T, et al. Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron X-ray microtomography[J]. JOM, 2016,68(3):765-771. [7] DEPOND P J, GUSS G, LY S, et al. In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry[J]. Materials & Design, 2018, 154:347-359. [8] CASATI R, LEMKE J, VEDANI M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology,2016,32(8):738-744. [9] PUEBLA K, MURR L E, GAYTAN S M, et al. Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V[J]. Materials Sciences and Applications, 2012,3(5):259-264. [10] CRAEGHS T, CLIJSTERS S, YASA E, et al. Online quality control of selective laser melting[C]//Solid Freeform Fabrication Proceedings, 2011:212-226. [11] KLESZCZYNSKI S, JACOBSMVHLEN J Z, REINARZ B, et al. Improving process stability of laser beam melting systems[C]//Fraunhofer Direct Digital Manufacturing Conference, 2014:187-192. [12] JACOBSMUHLEN J Z, KLESZCZYNSKI S, SCHNEIDER D, et al. High resolution imaging for inspection of Laser Beam Melting systems[C]//Instrumentation and Measurement Technology Conference (I2MTC), 2013:707-712. [13] NEEF A, SEYDA V, HERZOG D, et al. Low coherence interferometry in selective laser melting[J]. Physics Procedia, 2014, 56:82-89. [14] SCIME L, BEUTH J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Additive Manufacturing, 2018,19:114-126. [15] SCIME L, BEUTH J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2018, 24:273-286. [16] 林椹尠, 李妮, 惠小强. 基于空间金字塔的BoW模型图像分类方法[J]. 西安邮电大学学报, 2018, 23(3):31-37. LIN Z X, LI N, HUI X Q. An image classification method of BoW model based on spatial pyramid[J]. Journal of Xi'an University of Posts and Telecommunications, 2018, 23(3):31-37(in Chinese). [17] 闵信军. 基于灰度共生矩阵和视觉信息的布匹瑕疵检测方法研究[D]. 镇江:江苏大学, 2018:23-26. MIN X J. Research on detection methods of fabric defects based on gray level co-occurrence matrix and visual information[D]. Zhenjiang:Jiangsu University, 2018:23-26(in Chinese). [18] 孙枭文. 基于纹理特征和Hu不变矩的KELM滤光片缺陷识别研究[J]. 甘肃科学学报, 2019, 31(5):17-22. SUN X W. Study on the identification of KELM filter defects based on texture characteristics and hu invariant moment[J].Journal of Gansu Sciences, 2019, 31(5):17-22(in Chinese). [19] 陈静, 张艳新, 姜媛媛. 融合多特征与随机森林的纹理图像分类方法[J]. 传感器与微系统, 2019, 38(12):58-61. CHEN J, ZHANG Y X, JIANG Y Y. Texture image classification method combining multi-features and random forest[J]. Sensors and Microsystems, 2019, 38(12):58-61(in Chinese). [20] 肖旎旖. 基于相关性和冗余性分析的特征选择算法研究[D]. 大连:大连理工大学, 2013:5-6. XIAO Y N. The research of feature selection algorithm based on analysis of relevancy and redundancy[D]. Dalian:Dalian University of Technology, 2013:5-6(in Chinese). [21] 张鹏. 基于视觉的激光选区熔化成形铺粉质量在线监控系统研究[D]. 武汉:华中科技大学, 2017:36-51. ZHANG P. Research of a motoring system of deposition quality in selective laser melting based on machine vision[D]. Wuhan:Huazhong University of Science & Technology, 2017:36-51(in Chinese). |