航空学报 > 2023, Vol. 44 Issue (16): 228451-228451   doi: 10.7527/S1000-6893.2023.28451

多囊体临近空间飞艇多要素耦合建模与仿真

史智广1,2(), 杨玉洁2, 左宗玉1   

  1. 1.北京航空航天大学 自动化科学与电气工程学院,北京  100191
    2.北京临近空间飞艇技术开发有限公司,北京  100070
  • 收稿日期:2023-01-03 修回日期:2023-02-22 接受日期:2023-04-28 出版日期:2023-05-15 发布日期:2023-05-12
  • 通讯作者: 史智广 E-mail:shizhiguang_htyy@sina.cn
  • 基金资助:
    国家自然科学基金(62073019)

Multi-element coupled modeling and simulation for multi-capsule near-space airships

Zhiguang SHI1,2(), Yujie YANG2, Zongyu ZUO1   

  1. 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing  100191,China
    2.Beijing Near Space Airship Technology Development Co. Ltd. ,Beijing  100070,China
  • Received:2023-01-03 Revised:2023-02-22 Accepted:2023-04-28 Online:2023-05-15 Published:2023-05-12
  • Contact: Zhiguang SHI E-mail:shizhiguang_htyy@sina.cn
  • Supported by:
    National Natural Science Foundation of China(62073019)

摘要:

针对多囊体临近空间飞艇多要素耦合仿真及长航时能力评估的迫切需求,详细阐述了多囊体临近空间飞艇六自由度位置与姿态动力学模型、环境热力学模型、内外囊体热力学模型及囊体氦气损失模型,通过位置、时间、姿态、空速等动力学输出信息与压力成形体积、氦气质量等热力学输出信息实现平台力热动态耦合,能够全面反映飞艇在大气环境及操纵力作用下力热耦合变化规律,具备飞艇平台超热超压安全下的长航时定量评估能力。通过仿真发现,囊体内氦气在随风飘状态下最大超热达到55 ℃左右,为保证内外囊体白天压力安全需主动释放氦气导致飞行高度上升约100 m,夜晚囊体内压将至0 Pa无法维形保持浮力导致驻空高度快速降低,姿态振荡加剧,驻空航时仅有26.5 h,且动力全开无法获得稳定的航向飞行,空速来流降温无法最大效能发挥,需要控制系统接入实现动态闭环航路飞行,才能实现长航时飞行,具有重要的工程应用价值。

关键词: 动力学建模, 热力学建模, 氦气泄露建模, 长航时能力评估, 临近空间飞艇, 多要素耦合

Abstract:

Based on the urgent demand for multi-element coupled simulation and long-endurance capacity assessment of multi-capsule near-space airship, this paper describes six-degree-of-freedom position and attitude dynamics model, environmental thermodynamic model, inner-outer capsule thermodynamic model, and capsule helium loss model of multi-capsule near-space airships in detail. The dynamic and thermal coupling for the platform are realized through dynamic output information (e.g., position, time, attitude and airspeed) and thermodynamic output information (e.g., pressure forming volume and helium mass), which can fully reflect the dynamic and thermal coupled rule of airships under atmospheric environment and the effect of operation, and reveals the quantitative long-endurance assessment ability for airships under the safety of overheat and overpressure. Through simulation, it is found that the maximum overheat of helium in the capsule reaches about 55 ℃ in the condition of floating with wind. To ensure the pressure safety of the internal and external capsule during the day, helium should be released actively, which leads to the flight altitude increase of approximately 100 m. At night, the pressure in the capsule will reach 0 Pa, and the buoyancy and the shape cannot be maintained, causing a rapid decrease of floating altitude,intensified attitude oscillation, and the floating duration of 26.5 h only. In addition, airships cannot achieve stable course flight with full power flight,and the airspeed inflow cooling cannot be maximized. A control system needs to be connected to achieve dynamic closed-loop route flight, so as to realize long-endurance flight, which has important engineering application value.

Key words: dynamics modeling, thermodynamic modeling, helium leak modeling, long-endurance capability assessment, near space airship, multi-element coupling

中图分类号: