宋海浪1, 张建东2(), 史国庆2, 杨啟明2, 张耀中2
收稿日期:
2023-10-08
修回日期:
2023-10-10
接受日期:
2023-10-15
出版日期:
2024-03-15
发布日期:
2023-10-13
通讯作者:
张建东
E-mail:jdzhang@nwpu.edu.cn
基金资助:
Hailang SONG1, Jiandong ZHANG2(), Guoqing SHI2, Qiming YANG2, Yaozhong ZHANG2
Received:
2023-10-08
Revised:
2023-10-10
Accepted:
2023-10-15
Online:
2024-03-15
Published:
2023-10-13
Contact:
Jiandong ZHANG
E-mail:jdzhang@nwpu.edu.cn
Supported by:
摘要:
就航空电子综合化火控系统试飞结果综合评估中的火控建模、数据融合、信息管理、效能评估和精度分析等技术问题进行了探讨,对这些技术的理论依据、关键技术和试飞应用进行了讨论,为进一步深入研究和应用提供了信息、思路和方法。所述技术是型号航电综合化火控系统试飞准备的重要内容,可为试飞结果综合分析提供实用的技术手段。
中图分类号:
宋海浪, 张建东, 史国庆, 杨啟明, 张耀中. 航空火控系统试飞综合评估技术与方法探讨[J]. 航空学报, 2024, 45(5): 529687-529687.
Hailang SONG, Jiandong ZHANG, Guoqing SHI, Qiming YANG, Yaozhong ZHANG. Comprehensive evaluation techniques and methods for flight test of avionics fire control system[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529687-529687.
1 | 常显奇, 程永生. 常规武器装备试验学[M]. 北京: 国防工业出版社, 2007. |
CHANG X Q, CHENG Y S. Experimental science of conventional weapons and equipment[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). | |
2 | 周自全. 现代战斗机的飞行试验[J]. 北京航空航天大学学报, 2003, 29(12): 1110-1114. |
ZHOU Z Q. Flight test of modern fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1110-1114 (in Chinese). | |
3 | 空军装备部编写组. 美国空军试验鉴定程序(上)(中)(下)[M]. 北京: 航空工业出版社, 2014. |
Air Force Armament Department Writing Group. U.S. air force test qualification program Vol1 Vol2 Vol3[M]. Beijing: Aviation Industry Press, 2014 (in Chinese). | |
4 | 王鹏. 对新一代综合航电系统发展的探讨[J]. 中国设备工程, 2019(3): 209-210. |
WANG P. Discussion on the development of new generation integrated avionics system[J]. China Plant Engineering, 2019(3): 209-210 (in Chinese). | |
5 | 宋振国,装备试验鉴定概论[M]. 北京: 国防工业出版社,2020: 4. |
SONG Z G. Introduction to equipment test and appraisal[M]. Beijing: National Defense Industry Press, 2020: 4 (in Chinese). | |
6 | 武小悦. 装备性能试验[M]. 北京: 国防工业出版社, 2022. |
WU X Y. Equipment performance test[M]. Beijing: National Defense Industry Press, 2022 (in Chinese). | |
7 | 王凯. 武器装备作战试验[M]. 北京: 国防工业出版社, 2012. |
WANG K. Weapon equipment combat test[M]. Beijing: National Defense Industry Press, 2012 (in Chinese). | |
8 | 李向阳. 武器试验机建设关键技术研究[J]. 飞行力学, 2016, 34(3): 13-16, 20. |
LI X Y. Research on key technology of weapon test aircraft[J]. Flight Dynamics, 2016, 34(3): 13-16, 20 (in Chinese). | |
9 | 张洪江. 装备在役考核[M]. 北京: 国防工业出版社,2020: 4 |
ZHANG H J. Equipment in-service assessment[M]. Beijing: National Defense Industry Press, 2020: 4 (in Chinese). | |
10 | 陈敬志. 基于均匀设计的空地导弹火控精度试验技术研究[J]. 弹箭与制导学报, 2019, 39(5): 77-80. |
CHEN J Z. Accuracy test technologies for air-to-ground missile fire control system based on uniform design method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 77-80 (in Chinese). | |
11 | JANA S, SHIVKUMAR S, SHEWALE M, et al. Autonomous flight test of a novel nonconventional biplane micro air vehicle[J]. Journal of Aerospace Engineering, 2022, 35(5): 1-15. |
12 | 中国飞行试验研究院. F-35“闪电”Ⅱ战斗机飞行试验全记录[M]. 北京: 航空工业出版社, 2019. |
Chinese Flight Test Establishment. Full record of flight test of F-35 lightning Ⅱ fighter[M]. Beijing: Aviation Industry Press, 2019 (in Chinese). | |
13 | 曹景涛, 李文龙. 歼击机强度包线边界状态点试飞验证[J]. 科学技术与工程, 2019, 19(6): 263-269. |
CAO J T, LI W L. Flight test verification of the fighter’s strength envelope boundary state point[J]. Science Technology and Engineering, 2019, 19(6): 263-269 (in Chinese). | |
14 | 高郭池, 全敬泽, 李保良, 等. Y12F飞机局方审定飞行试验研究[J]. 飞行力学, 2020, 38(1): 84-89. |
GAO G C, QUAN J Z, LI B L, et al. Research on the administration certification flight test of the Y12F aircraft[J]. Flight Dynamics, 2020, 38(1): 84-89 (in Chinese). | |
15 | 张启鹏, 刘超强, 刘庆灵. 他机验证试飞技术的发展[J]. 大飞机, 2021(4): 16-21. |
ZHANG Q P, LIU C Q, LIU Q L. Development of verification flight test technology for other aircraft[J]. Jetliner, 2021(4): 16-21 (in Chinese). | |
16 | 罗松. 民机试飞符合性验证研究[C]∥第十届中国航空学会青年科技论坛, 2022: 255-260. |
LUO S. Civil airplane flight test compliance verification studies[C]∥ Proceedings of the 10th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics, 2022: 255-260 (in Chinese). | |
17 | 赵霞. 航空武器装备试验与仿真[M]. 北京: 航空工业出版社, 2019. |
ZHAO X. Test and simulation of aviation weapons and equipment[M]. Beijing: Aviation Industry Press, 2019 (in Chinese). | |
18 | 李靖. 基于作战使用的军机航电/武器系统飞行试验设计[J]. 弹箭与制导学报, 2018, 38(2): 143-146. |
LI J. Design of the flight test for military avionics/weapon systems based on operational use[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(2): 143-146 (in Chinese). | |
19 | 刘映国, 王凯, 王峰. 外军装备试验鉴定[M]. 北京: 国防工业出版社, 2022. |
LIU Y G, WANG K, WANG F. Test and appraisal of foreign military equipment[M]. Beijing: National Defense Industry Press, 2022 (in Chinese). | |
20 | 王建军, 李杨. 试飞测试系统地面实验验证技术初探[C]∥2011航空试验测试技术学术交流会, 2010: 167-171. |
FAN X M, WANG J J, LI Y. Study of ground experimental verification for flight test measuring system[C]∥ 2011 Aviation Test and Testing Technology Academic Exchange Conference, 2010:167-171 (in Chinese). | |
21 | 郑杰. 试验设计与数据分析: 基于R语言应用[M]. 广州: 华南理工大学出版社, 2016. |
ZHENG J. Experimental design and data analysis: Based on R language application[M]. Guangzhou: South China University of Technology Press, 2016 (in Chinese). | |
22 | 袁大天, 于芳芳, 李太平. 直升机航电系统高寒山地环境飞行试验[J]. 航空科学技术, 2018, 29(10): 32-37. |
YUAN D T, YU F F, LI T P. Research on flight test of helicopter avionics system in alpine and mountainous regions[J]. Aeronautical Science & Technology, 2018, 29(10): 32-37 (in Chinese). | |
23 | 宋海靖, 郭毓文. 歼击机座舱人机界面良好性综合评价方法及应用研究[J]. 航空科学技术, 2017, 28(5): 28-32. |
SONG H J, GUO Y W. Study on methods and application of human-computer interface ergonomics evaluation for fighter cockpit[J]. Aeronautical Science & Technology, 2017, 28(5): 28-32 (in Chinese). | |
24 | 郭锦炎, 竺伊文, 王华吉, 等. 某多级杆式空气发射系统内弹道仿真与试验研究[J]. 弹道学报, 2022, 34(1): 72-76. |
GUO J Y, ZHU Y W, WANG H J, et al. Simulation and experimental study on the interior ballistics of multistage pistion cylinder air launching equipment[J]. Journal of Ballistics, 2022, 34(1): 72-76 (in Chinese). | |
25 | 方慧波, 王金彪. 民用飞机发动机灭火系统地面试验技术研究[J]. 民用飞机设计与研究, 2020(2): 26-29. |
FANG H B, WANG J B. Ground test technology of nacelle fire protection system for civil airplane[J]. Civil Aircraft Design & Research, 2020(2): 26-29 (in Chinese). | |
26 | 曹栓劳, 张安, 体卫群. 战斗机综合航电/火控系统的多机协同试飞[J]. 火力与指挥控制, 2007, 32(3): 111-113. |
CAO S L, ZHANG A, TI W Q. Multi-flighter coordinated flight test of new integrated fire control system[J]. Fire Control and Command Control, 2007, 32(3): 111-113 (in Chinese). | |
27 | 王超, 黄兵旺, 贾伟力. 某型无人直升机前飞段仿真建模与试飞验证[J]. 飞行力学, 2020, 38(2): 71-76. |
WANG C, HUANG B W, JIA W L. Simulation modeling in forward flight of an unmanned helicopter and flight test verification[J]. Flight Dynamics, 2020, 38(2): 71-76 (in Chinese). | |
28 | 宋羽, 邹汝平, 王军. 基于模型的系统工程在导弹系统研制中的实践[J]. 兵工学报, 2022, 43(S1): 97-106. |
SONG Y, ZOU R P, WANG J. On the practice of model-based system engineering in missile development[J]. Acta Armamentarii, 2022, 43(S1): 97-106 (in Chinese). | |
29 | 吴福平, 崔小航, 邓皓, 等. 基于变角度积分的六自由度弹道快速解算方法[J]. 航空科学技术, 2016, 27(9): 49-51. |
WU F P, CUI X H, DENG H, et al. Quick solving algorithm of 6-DOF trajectory based on variable step angel integration[J]. Aeronautical Science & Technology, 2016, 27(9): 49-51 (in Chinese). | |
30 | 黄义, 汪德虎, 余家祥, 等. 舰炮一维弹道修正弹射击误差分离和校正研究[J]. 指挥控制与仿真, 2012, 34(3): 44-46. |
HUANG Y, WANG D H, YU J X, et al. Research on separating and correcting firing errors of one dimension trajectory correction projectile fired by shipborne Gun[J]. Command Control & Simulation, 2012, 34(3): 44-46 (in Chinese). | |
31 | 张宏林, 程卫真, 夏品奇. 基于分布式FBG传感测量的旋翼动载荷工程建模与试飞验证[J/OL].应用力学学报:1-14[2023-08-15]. |
ZHANG H L, CHEN W Z, XIA P Q. Engineering modeling and flight testing of the dynamic loads on rotor structure based on distributed fiber Bragg grating sensing measurement[J/OL]. Chinese Journal of Applied Mechanics: 1-14[2023-08-15] (in Chinese). | |
32 | 杨瑞赓, 孙凤琴, 田银桥. 通用飞机验证试飞智能辅助测试系统需求研究[J]. 测控技术, 2020, 39(12): 126-130, 140. |
YANG R G, SUN F Q, TIAN Y Q. Intelligent auxiliary test system requirements of general aircraft verification flight[J]. Measurement & Control Technology, 2020, 39(12): 126-130, 140 (in Chinese). | |
33 | 杨犇, 金飞腾, 刘燕斌, 等. 基于高速飞行器火力控制模型的智能解算方法[J/OL]. 北京航空航天大学学报: 1-14[2023-09-19]. |
YANG B, JIN F T, LIU Y B, et al. Intelligent solution method based on high-speed aircraft fire control model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-14[2023-09-19] (in Chinese). | |
34 | 范海洲, 黄楷, 魏兵卓, 等. 一体化火力控制与指挥控制关键技术研究[J]. 数字技术与应用, 2020, 38(2): 159-162, 164. |
FAN H Z, HUANG K, WEI B Z, et al. Research on critical technique in incorporated fire control and command control[J]. Digital Technology & Application, 2020, 38(2): 159-162, 164 (in Chinese). | |
35 | 葛银茂, 韩兆福, 陈遵银, 等. 多传感器航迹数据融合的机载火控系统[J]. 中国测试技术, 2006, 32(4): 59-60, 112. |
GE Y M, HAN Z F, CHEN Z Y, et al. Research on flight-path data amalgamation of multi-sensor aerial fire-control system[J]. China Meas Urement, 2006, 32(4): 59-60, 112 (in Chinese). | |
36 | 梁葆华, 侯玉宏. 机载多传感器信息融合试飞技术研究[J]. 航空计算技术, 2014, 44(2): 128-130, 134. |
LIANG B H, HOU Y H. Study on flight test technology of airborne multi-sensor data fusion[J]. Aeronautical Computing Technique, 2014, 44(2): 128-130, 134 (in Chinese). | |
37 | 张玲, 陈路路, 梁进科, 等. 一种基于支持向量机的雷达多目标分类方法[J]. 无线电工程, 2020, 50(1): 53-56. |
ZHANG L, CHEN L L, LIANG J K, et al. A radar multi-target classification method based on support vector machine[J]. Radio Engineering, 2020, 50(1): 53-56 (in Chinese). | |
38 | 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531-547. |
ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547 (in Chinese). | |
39 | 宋蕾. 优化贝叶斯的数据融合算法[J]. 电子技术与软件工程, 2019(6): 157. |
SONG L. Optimized Bayesian data fusion algorithm[J]. Electronic Technology & Software Engineering, 2019(6): 157 (in Chinese). | |
40 | 董刚刚. 基于单演信号的SAR图像目标识别技术研究[D]. 长沙: 国防科学技术大学, 2016. |
DONG G G. Study on target recognition in SAR image via the monogenic signal[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
41 | 施晓东, 杨世坤. 多传感器信息融合研究综述[J]. 通信与信息技术, 2022(6): 34-41. |
SHI X D, YANG S K. A review of research on multi-sensor information fusion[J]. Communication & Information Technology, 2022(6): 34-41 (in Chinese). | |
42 | 翟文军, 祝梁生. 机载多传感器数据融合技术[J]. 火力与指挥控制, 1995, 20(1): 45-50. |
ZHAI W J, ZU L S. Airborne multisensor data fusion techiques[J]. Fire Control & Command Control, 1995, 20(1): 45-50 (in Chinese). | |
43 | GAO W D, ZHAO Z W. Gait phase recognition using fuzzy logic regulation with multisensor data fusion[J]. Journal of Sensors, 2021, 2021: 1-13. |
44 | KASHINATH S A, MOSTAFA S A, LIM D, et al. A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources[J]. Journal of Intelligent Systems, 2021, 30(1): 947-965. |
45 | 龚树凤, 龙伟军, 贲德, 等. 组网雷达自适应模糊CFAR检测融合算法[J]. 系统工程与电子技术, 2022, 44(1): 100-107. |
GONG S F, LONG W J, BEN D, et al. Adaptive fuzzy CFAR detection fusion algorithm for netted radar[J]. Systems Engineering and Electronics, 2022, 44(1): 100-107 (in Chinese). | |
46 | CHEN B, LUO X L. Incipient fault detection benefited from voting fusion strategy on analysis of process variation[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 215: 104347. |
47 | 李程, 夏丹, 董世运, 等. 复杂陆战场环境下的智能感知理论现状与发展[J]. 国防科技, 2021, 42(3): 42-48. |
LI C, XIA D, DONG S Y, et al. Current situation and future development of intelligent perception theory in complex land battlefield environment[J]. National Defense Technology, 2021, 42(3): 42-48 (in Chinese). | |
48 | 罗俊海, 杨阳. 基于数据融合的目标检测方法综述[J]. 控制与决策, 2020, 35(1): 1-15. |
LUO J H, YANG Y. An overview of target detection methods based on data fusion[J]. Control and Decision, 2020, 35(1): 1-15 (in Chinese). | |
49 | 杨峰, 石振东, 姜勇, 等. 机载三波长激光雷达系统[J]. 中国科学: 技术科学, 2023, 53(9): 1556-1566. |
YANG F, SHI Z D, JIANG Y, et al. Airborne three-wavelength LiDAR system[J]. Scientia Sinica (Technologica), 2023, 53(9): 1556-1566 (in Chinese). | |
50 | 颜世东, 杨望灿. 面向异构融合的飞行试验异常数据预测技术研究[J]. 舰船电子工程, 2022, 42(5): 91-95. |
YAN S D, YANG W C. Complex data anomaly prediction technology based on heterogeneous fusion algorithm[J]. Ship Electronic Engineering, 2022, 42(5): 91-95 (in Chinese). | |
51 | 王旭, 宁晨伽, 王文正, 等. 面向飞行试验的多源气动数据智能融合方法[J]. 空气动力学学报, 2023, 41(2): 12-20. |
WANG X, NING C J, WANG W Z, et al. Intelligent fusion method of multi-source aerodynamic data for flight tests[J]. Acta Aerodynamica Sinica, 2023, 41(2): 12-20 (in Chinese). | |
52 | 张蓓蓓. 面向多传感器综合探测的信息融合试飞方法[J]. 航空科学技术, 2021, 32(9): 31-35. |
ZHANG B B. Information fusion flight test method for multi-sensor comprehensive detection[J]. Aeronautical Science & Technology, 2021, 32(9): 31-35 (in Chinese). | |
53 | 王霖萱,李宏.基于边云协同的飞行试验数据处理系统[J].南京信息工程大学学报(自然科学版), 2023, 15(6): 692-702. |
WANG L X, LI H. Flight test data processing system based on clouding synergy[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2023, 15(6): 692-702 (in Chinese). | |
54 | 闫鹏庆. 试飞改装构型管理与多BOM方法研究[J]. 中国设备工程, 2023(7): 73-75. |
YAN P Q. Research on configuration management and multi-BOM method of flight test modification[J]. China Plant Engineering, 2023(7): 73-75 (in Chinese). | |
55 | 栾瑞鹏,张静,刘立坤.面向装备试验鉴定领域数据治理的知识图谱本体构建[J/OL].系统工程与电子技术:1-10[2023-09-20]. |
LUAN R P, ZHANG Q, LIU L K. A knowledge graph ontology construction for data governance in equipment test and evaluation field[J/OL]. Systems Engineering and Electronics:1-10[2023-09-20] (in Chinese). | |
56 | 李煦阳, 程波, 李振武. 基于试飞安全要素的飞参自动判读分析工程研究[J]. 设备管理与维修, 2022(20): 29-31. |
LI X Y, CHENG B, LI Z W. Engineering research on automatic interpretation and analysis of flight parameters based on flight test safety factors[J]. Plant Maintenance Engineering, 2022(20): 29-31 (in Chinese). | |
57 | 杨秋辉, 李进, 吕瑛洁. 装备试验大数据综合管理系统建设需求与应用场景研究[C]∥第四届体系工程学术会议——数字化转型中的体系工程, 2022: 109-114. |
YANG Q H, LI J, LYU Y J, et al. Research on construction requirements and application scenarios of equipment test big data integrated management system[C]∥ Proceedings of the 4th Systems Engineering Conference-Systems Engineering in Digital Transformation, 2022: 109-114 (in Chinese). | |
58 | 袁炳南, 霍朝晖, 白效贤. 飞行试验大数据技术发展及展望[J]. 计算机测量与控制, 2015, 23(6): 1844-1847. |
YUAN B N, HUO Z H, BAI X X. Technology development and prospects of big data in flight test[J]. Computer Measurement & Control, 2015, 23(6): 1844-1847 (in Chinese). | |
59 | 杜梓冰, 张立丰, 陈敬志, 等. 有人/无人机协同作战演示验证试飞关键技术[J]. 航空兵器, 2019, 26(4): 75-81. |
DU Z B, ZHANG L F, CHEN J Z, et al. Critical technologies of demonstration flight test of cooperative operation for manned/unmanned aerial vehicles[J]. Aero Weaponry, 2019, 26(4): 75-81 (in Chinese). | |
60 | 朱宝鎏, 朱荣昌, 熊笑非. 作战飞机效能评估[M]. 2版. 北京: 航空工业出版社, 2006. |
ZHU B L, ZHU R C, XIONG X F. Effectiveness evaluation of combat aircraft[M]. 2nd ed. Beijing: Aviation Industry Press, 2006 (in Chinese). | |
61 | 王荣浩, 高星宇, 向峥嵘. 有人/无人机协同系统及关键技术综述[J]. 兵器装备工程学报, 2023, 44(8): 72-80. |
WANG R H, GAO X Y, XIANG Z R. Review on the manned/unmanned aerial vehicle cooperative system and key technologies[J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 72-80 (in Chinese). | |
62 | 卢元杰, 龙珊珊, 赵航, 等. 基于混合模型的异构无人机蜂群效能评估[J/OL]. 系统仿真学报: 1-13[2023-09-20]. |
LU Y J, LONG S S, ZHAO H, et al. Effectiveness evaluation of heterogeneous UAV swarm system based on a hybrid model[J/OL]. Journal of System Simulation: 1-13[2023-09-20] (in Chinese). | |
63 | 杜梓冰, 段亚, 陈敬志, 等. 基于试飞的察打一体无人机任务效能评估方法[J]. 兵器装备工程学报, 2019, 40(6): 39-42. |
DU Z B, DUAN Y, CHEN J Z, et al. Operational effectiveness evaluation method of reconnaissance and strike integrated UAV based on flight test[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 39-42 (in Chinese). | |
64 | 戴卫兵, 李盘文, 艾波. 新一代民机综合航电总线试飞测试技术[C]∥第八届民用飞机航电国际论坛, 2019: 6. |
DAI W B, LI P W, AI B. A new generation of civil aircraft integrated avionics bus test technology[C]∥ Proceedings of the 8th International Forum on Civil Aircraft Avionics. Aviation Industry Press, 2019: 6 (in Chinese). | |
65 | 高扬, 潘鹏飞, 李秋锋, 等. 某型螺旋桨拉力确定试飞参数不确定度分配及验证[J]. 飞行力学, 2018, 36(3): 93-96. |
GAO Y, PAN P F, LI Q F, et al. Parameter uncertainty distribution and verification for a certain propeller thrust determination flight test[J]. Flight Dynamics, 2018, 36(3): 93-96 (in Chinese). | |
66 | MCSHEA R. Test and evaluation of aircraft avionics and weapon systems[M]. Reston: AIAA, 2010. |
[1] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[2] | 杨华, 陈树生, 高正红, 姜权峰, 张伟. 基于贝叶斯框架的旋翼气动力数据融合[J]. 航空学报, 2024, 45(8): 128960-128960. |
[3] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
[4] | 张怀捷, 马静雅, 刘浩源, 郭品, 邓慧超, 徐坤, 丁希仑. 视觉与惯性融合的多旋翼飞行机器人室内定位技术[J]. 航空学报, 2023, 44(5): 426964-426964. |
[5] | 刘冠杉, 刘杰, 王新远. 反跨介质导弹攻击拦截策略[J]. 航空学报, 2023, 44(21): 528873-528873. |
[6] | 王晓悦, 王珣, 王永贞, 费腾, 刘大卫. 基于仿真的蜂群体系对抗效能评估方法[J]. 航空学报, 2022, 43(S1): 726937-726937. |
[7] | 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 225064-225064. |
[8] | 王立楠, 蔡楚瀚, 刘国生, 马榜, 马贤杰. 基于效能评估的战斗机末端光电对抗仿真[J]. 航空学报, 2021, 42(8): 525834-525834. |
[9] | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689-524689. |
[10] | 王崴, 赵敏睿, 高虹霓, 朱帅, 瞿珏. 基于脑电和眼动信号的人机交互意图识别[J]. 航空学报, 2021, 42(2): 324290-324290. |
[11] | 闵耀兵, 马燕凯, 李松. CFD中统计误差的数值精度分析[J]. 航空学报, 2020, 41(4): 123554-123554. |
[12] | 常琦, 杨维希, 赵恒, 孟瑶, 刘君, 高鹤明. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2): 223336-223336. |
[13] | 叶立军, 刘付成, 尹海宁, 徐樱, 宝音贺西. 基于纵向滤波的星敏感器低频误差在线估计[J]. 航空学报, 2019, 40(10): 323163-323163. |
[14] | 祁俊威, 王春洁, 丁建中. 基于降维算法和等效杆长的可展结构精度分析[J]. 航空学报, 2017, 38(6): 220590-220590. |
[15] | 柴国钟, 吕君, 鲍雨梅, 姜献峰, 丁浩. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J]. 航空学报, 2017, 38(12): 221291-221291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学