[1] |
BAKER T J. Mesh generation:Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
|
[2] |
SLOTNIK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aeroscience:NASA/CR-2014-218178[R]. Washinton,D.C.:NASA, 2014.
|
[3] |
孙旭, 张家忠, 黄科峰. 基于弹簧近似的非结构化网格自适应处理方法[J]. 西安交通大学学报, 2010, 44(9):104-108. SUN X, ZHANG J Z, HUANG K F. Spring analogy-based adaptive method for unstructured grids[J]. Journal of Xi'an Jiaotong University, 2010, 44(9):104-108(in Chinese).
|
[4] |
GREENE P, SCHOFILD S, NOURGALIEV R. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation[J]. Journal of Computational Physics, 2017, 335:664-687.
|
[5] |
唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese).
|
[6] |
MARCUM D, ALAUZET F. 3D metric-aligned and orthogonal solution adaptive mesh generation[J]. Procedia Engineering, 2017, 203(1):78-90.
|
[7] |
SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston, VA:AIAA, 2005.
|
[8] |
张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12):3605-3614. ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3605-3614(in Chinese).
|
[9] |
唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10):122894. TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122894(in Chinese).
|
[10] |
TANG J, LI B, CHEN J, et al. Large scale parallel computing for fluid dynamics on unstructured grid[C]//15th International Symposium on Parallel and Distributed Computting, 2016.
|
[11] |
陈刚,王磊,陆忠华,等. 万核级并行飞机气动模拟软件CCFD研制[J]. 华中科技大学学报(自然科学版),2011,39(增刊1):99-101. CHEN G, WANG L, LU Z H, et al. Development of ten-thousand-core parallel software CCFD for aircraft aerodynamics simulation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(Suppl. 1):99-101(in Chinese).
|
[12] |
YANG C, XUE W, FU H, et al. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016.
|
[13] |
XU C, DENG X, ZHANG L, et al. Parallelizing a high-order CFD software for 3D, multi-block, structural grids on the TianHe-1A supercomputer[C]//International Supercomputing Conference, 2016:26-39.
|
[14] |
KAVOUKLIS C, KALLINDERIS Y. Parallel adaptation of general three-dimensional hybrid meshes[J]. Journal of Computational Physics, 2010, 229:3454-3473.
|
[15] |
VARADARAJAN R, HWANG I. An efficient dynamic load balancing algorithm for adaptive mesh refinement[C]//ACM Symposium on Applied Computing, 1970:464-472.
|
[16] |
PARK M A, DARMOFAL D L. Parallel anisotropic tetrahedral adaptation:AIAA-2008-0917[R]. Reston, VA:AIAA, 2008.
|
[17] |
BOILLAT J, BRUCE F, KROPF P. A dynamic load-balancing algorithm for molecular dynamics simulation on multi-processor systems[J]. Journal of Computational Physics, 1991, 96:1-14.
|
[18] |
CYBENKO G. Dynamic load balancing for distributed memory multi-processors[J]. Journal of Parallel and Distributed Computing, 1989, 7:279-301.
|
[19] |
LEPAGE C Y, STCYR A, HABASHI W G. Parallel unstructured mesh adaptation on distributed memory systems:AIAA-2004-2532[R]. Reston, VA:AIAA, 2004.
|
[20] |
PARK Y M, KWON O J. Unsteady flow computations using a 3-D parallel unstructured dynamic mesh adaptation algorithm:AIAA-2001-0865[R]. Reston, VA:AIAA, 2001.
|
[21] |
LIAN Y Y, HSU K H, SHAO Y L, et al. Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications[J]. Computer Physics Communications, 2006, 175:721-737.
|
[22] |
ANTEPARA O, LEHMKUHL O, CHIVA J, et al. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re=22000[J]. Procedia Engineering, 2013, 61:246-250.
|
[23] |
OLIKER L, BISWAS R, GABOW H N. Parallel tetrahedral mesh adaptation with dynamic load balancing[J]. Parallel Computing, 2000, 26(12):1583-1608.
|
[24] |
CAVALLO P A. Further extension and validation of a parallel unstructured mesh adaptation package:AIAA-2005-0924[R]. Reston, VA:AIAA, 2005.
|
[25] |
ALAUZET F, LI X, SEOL E S, et al. Parallel anisotropic 3D mesh adaptation by mesh modification[J]. Engineering with Computers, 2006, 21:247-258.
|
[26] |
DIGONNET H, COUPEZ T, LAURE P, et al. Massively parallel anisotropic mesh adaptation[J]. International Journal of High Performance Computing Applications, 2017, 33(1):3-24.
|
[27] |
SCHLOEGEL K, KARYPIS G, KUMAR V. Wave front diffusion and lmsr:Algorithms for dynamic repartitioning of adaptive meshes[J]. IEEE Transactions on Parallel and Distributed Systems, 2001, 12(5):451-466.
|
[28] |
唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
|
[29] |
CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
|
[30] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
|
[31] |
KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
|
[32] |
GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model corrections on drag prediction of NASA common research model:AIAA-2014-4371[R]. Reston, VA:AIAA, 2014.
|