[1] ROE P L. Approximate Riemann solvers parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [2] 周禹, 阎超. Roe格式中不同类型熵修正性能分析[J]. 北京航空航天大学学报, 2009, 35(3):356-360. ZHOU Y, YAN C. Entropy correction analyses for Roe scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3):356-360(in Chinese). [3] TADMOR E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problem[J]. Acta Numerica, 2003, 12(12):451-512. [4] KERMANI M J, PLETT E G. Modified entropy correction formula for the Roe scheme:AIAA-2001-0083[R]. Reston, VA:AIAA, 2001. [5] ALEKSANDAR J, HRVOJE J. Entropy stable multi-dimensional dissipation function for the Roe scheme on unstructured meshes:AIAA-2012-0569[R]. Reston, VA:AIAA, 2012. [6] PHONGTHANAPANICH S, DECHAUMPHAI P. Flux-difference splitting scheme with modified multidimensional dissipation on unstructured meshes[J]. Journal of the Chinese Institute of Engineers, 2004, 27(7):981-992. [7] HARTEN A, HYMAN J. Self-adjusting grid method for one dimensional hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 50(2):235-269. [8] PERRY K M, IMLAY S T. Blunt body flow simulations:AIAA-1998-2904[R]. Reston, VA:AIAA, 1998. [9] ROBINET J C, GRESSIER J, CASALIS G, et al. Shock wave instability and the carbuncle phenomenon:same intrinsic origin[J]. Journal of Fluid Mechanics, 2011, 417:237-263. [10] HARTEN A. High resolution scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393. [11] VAN LEER B, LEE W T, POWELL K G, et al. Sonic-point capturing:AIAA-1989-1945[R]. Reston, VA:AIAA, 1989. [12] 张培红, 张耀冰, 周桂宇, 等. 面向混合网格高精度阻力预测的梯度求解方法[J]. 航空学报, 2018, 39(1):121415. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121415(in Chinese). [13] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798. [14] LEVY D W, ZICKUHR T, VASSBERG J C, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop:AIAA-2002-0841[R]. Reston, VA:AIAA, 2002. [15] LAFLIN K R, KLAUSMEYER S M, ZICKUHR T, et al. Summary of the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178. [16] JOSEPH H M, MICHAEL J H. Statistical analysis of the AIAA Drag Prediction Workshop CFD solutions:AIAA-2007-0254[R]. Reston, VA:AIAA, 2007. [17] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aero-sciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [18] BARTH T J. An overview of combined uncertainty and a posteriori error bound estimates for CFD calculations:AIAA-2016-1062[R]. Reston, VA:AIAA, 2016. [19] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order ac-curacy numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese). [20] 张耀冰, 邓有奇. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 39(2):163-169. ZHANG Y B, DENG Y Q. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 39(2):163-169(in Chinese). [21] 张健, 邓有奇, 李彬, 等. 一种适用于三维混合网格的GMRES加速收敛新方法[J]. 航空学报, 2016, 37(11):3226-3235. ZHANG J, DENG Y Q, LI B, et al. A new method to accelerate GMRES's convergence applying to three-dimensional hybrid grid[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3226-3235(in Chinese). [22] 张扬, 张来平, 赫新, 等. 基于非结构/混合网格的脱体涡模拟算法[J]. 航空学报, 2015, 36(9):2900-2910. ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation based on unstructured and hybrid grid[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2900-2910(in Chinese). [23] 刘强, 白鹏, 李峰, 等. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4):120338. LIU Q, BAI P, LI F, et al. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120338(in Chinese). [24] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese). [25] 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38(1):120102. ZHANG L, LI J. Numerical simulations of super-sonic base flow field based on RANS/LES approaches[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120102(in Chinese). [26] 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2):208-217. XU J, LIU Q H, CAI J S, et al. Drag prediction based on overset grids with implicit hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):208-217(in Chinese). [27] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese). [28] 康忠良, 阎超. 适用于混合网格的约束最小二乘重构方法[J]. 航空学报, 2012, 33(9):1598-1605. KANG Z L, YAN C. Constrained least-squares recon-struction method for mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1598-1605(in Chinese). [29] 李钊, 陈海昕, 张宇飞. 基于广义Richardson外插方法的阻力预测精度分析[J]. 航空学报, 2015, 36(7):2105-2114. LI Z, CHEN H X, ZHANG Y F. Accuracy analysis of drag prediction based on generalized Richardson extrapolation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2105-2114(in Chinese). |