航空学报 > 2020, Vol. 41 Issue (1): 123221-123221   doi: 10.7527/S1000-6893.2019.23221

单孔容腔瞬态充气换热的理论分析方法

丁水汀1,2, 于航1,2, 邱天1,2, 单晓明3, 贺宜红3   

  1. 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 北京航空航天大学 航空发动机气动热力国家重点实验室, 北京 100083;
    3. 中国航发湖南动力机械研究所, 株洲 412000
  • 收稿日期:2019-06-14 修回日期:2019-07-09 出版日期:2020-01-15 发布日期:2019-08-12
  • 通讯作者: 邱天 E-mail:qiutian@buaa.edu.cn

Theoretical analysis method for heat transfer in transient charging of a cavity with single opening

DING Shuiting1,2, YU Hang1,2, QIU Tian1,2, SHAN Xiaoming3, HE Yihong3   

  1. 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, Beihang University, Beijing 100083, China;
    3. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412000, China
  • Received:2019-06-14 Revised:2019-07-09 Online:2020-01-15 Published:2019-08-12

摘要: 换热对于容腔瞬态响应过程有显著影响,而目前缺乏分析容腔瞬态过程换热的通用方法,导致容腔瞬态响应模拟精度较差。针对这一现状,基于自由射流、冲击射流及外掠平板换热理论,提出了一种模拟非绝热单孔容腔瞬态充气过程换热的理论方法。应用该方法模拟了容腔压力和温度的瞬态响应过程,并与试验数据进行了对比。结果表明:该理论方法的模拟结果与试验数据吻合很好,压力最大相对误差不超过3%,温度最大相对误差不超过1%,验证了理论方法的可行性和准确性。而绝热模型的模拟结果与试验数据相比,压力和温度的最大相对误差分别可达12%和14%,等温模型的压力和温度的最大相对误差分别可达6%和7%,说明理论方法显著提高了容腔瞬态响应模拟精度。同时,理论分析方法不仅具有较强的通用性,还能够极大地降低分析容腔瞬态换热的成本,可以有效支撑空气系统非绝热容腔元件建模。

关键词: 容腔, 瞬态响应, 充气过程, 换热, 理论分析

Abstract: Heat transfer has a significant effect on the transient response process of the cavity. However, there lacks a general method for analyzing the heat transfer in the cavity transient process, resulting in poor transient response simulation accuracy. In this situation, based on the theory of free jet, impinging jet, and heat transfer for flow over a flat surface, a theoretical method for simulating heat transfer in a non-adiabatic cavity with single opening transient charging process is proposed. The transient response process of the pressure and temperature of the cavity is simulated and compared with the experimental data. The results show that the simulation results based on the theoretical method agree well with the experimental data, the maximum relative error of pressure does not exceed 3%, and the maximum relative error of temperature does not exceed 1%. The feasibility and accuracy of the theoretical method are verified. Compared with the experimental data, the maximum relative error of pressure and temperature based on adiabatic model can reach 12% and 14%. Also, the maximum relative error of pressure and temperature based on the isothermal model can reach 6% and 7%. These findings show that the theoretical method significantly improves the simulation accuracy. Meanwhile, the theoretical analysis method has strong universality, and can also greatly reduce the cost of analyzing the transient heat transfer of the cavity, which can effectively support the modeling of non-adiabatic cavity component of air system.

Key words: cavity, transient response, charging process, heat transfer, theoretical analysis

中图分类号: