[1] |
SHIN J. The NASA aviation safety program:Overview:NASA/TM-2000-209810[R]. Washington, D.C.:NASA, 2000.
|
[2] |
王华阁. 航空发动机设计手册——空气系统及传热分析[M]. 北京:航空工业出版社, 2001:1-5. WANG H G. Design manual of aero-engine-Analysis of air system and heat transfer[M]. Beijing:Aviation Industry Press, 2001:1-5(in Chinese).
|
[3] |
中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范:GJB241A-2010[S]. 北京:总装备部军标出版发行部, 2010:25-26, 75-76. General Reserve Department of PLA. General specification for aircraft turbojet and turbofan engine:GJB241A-2010[S]. Beijing:General Reserve Department Military Standards Publishing Department, 2010:25-26, 75-76(in Chinese).
|
[4] |
DUTTON J C, COVERDILL R E. Experiments to study the gaseous discharge and filling of vessels[J]. International Journal of Engineering Education, 1997, 13(2):123-134.
|
[5] |
THORNCROFT G, PATTON J S, GORDON R. Modeling compressible air flow in a charging or discharging vessel and assessment of polytropic exponent[C]//ASEE Annual Conference, 2007.
|
[6] |
GALLAR L, CALCAGNI C. Time accurate modelling of the secondary air system response to rapid transients[J]. Journal of Aerospace Engineering, 2011, 225(8):946-958.
|
[7] |
高文君, 刘振侠, 朱鹏飞, 等.航空发动机静止盘腔瞬态特性数值与实验研究[J].推进技术, 2019, 40(3):496-503. GAO W J, LIU Z X, ZHU P F, et al. Numerical and experimental investigation of transient response of static disc cavity in aero-engine[J]. Journal of Propulsion Technology, 2019, 40(3):496-503(in Chinese).
|
[8] |
杨丽红, 沈航明, 宋元明. 等温容器放气过程中对流换热模型的研究[J]. 中国机械工程, 2014, 25(18):2489-2495. YANG L H, SHEN H M, SONG Y M. Study on convection heat transfer model of isothermal chamber during discharge[J]. China Mechanical Engineering, 2014, 25(18):2489-2495(in Chinese).
|
[9] |
郭钟华, 李小宁, 香川利春. 考虑热传递的真空容腔压力响应研究[J]. 真空科学与技术学报, 2015, 35(1):74-78. GUO Z H, LI X N, TOSHIHARU K. Impact of heat transfer on pressure response in vacuum chamber of pneumatic vacuum system[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(1):74-78(in Chinese).
|
[10] |
DING S T, YU H, QIU T. Modeling of the cavity response to rapid transient considering the effect of heat transfer:GT2018-75264[R]. New York:ASME, 2018.
|
[11] |
丁水汀, 于航, 邱天. 非绝热单孔容腔瞬态响应的零维建模[J]. 北京航空航天大学学报, 2018, 44(2):215-222. DING S T, YU H, QIU T. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):215-222(in Chinese).
|
[12] |
ALBERTSON M L, DAI Y B, JENSEN R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1):639-664.
|
[13] |
SCHLICHTING H. Boundary layer theory[M]. 9th ed. Heidelberg:Springer, 2017:118-119.
|
[14] |
BELTAOS S, RAJARATNAM N. Impinging circular turbulent jets[J]. Journal of the Hydraulics Division, 1974,100(10):1313-1328.
|
[15] |
LIENHARD J H IV, LIENHARD J H V. A heat transfer textbook[M]. 3rd ed. Cambridge, MA:Phlogiston Press, 2006:301-302.
|
[16] |
HARTNETT J P, IRVINE T F. Advances in heat transfer:Volume 13[M]. New York:Academic Press, 1977:4-5.
|
[17] |
BEITELMAL A H, SHAH A J, SAAD M A. Analysis of an impinging two-dimensional jet[J]. Journal of Heat Transfer, 2006, 128(3):307-310.
|
[18] |
GARDON R, AKFIRAT J C. The role of turbulence in determining the heat-transfer characteristics of impinging jets[J]. International Journal of Heat and Mass Transfer, 1965, 8(10):1261-1271.
|
[19] |
KATTI V, PRABHU S V. Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle[J]. International Journal of Heat and Mass Transfer, 2008, 51(17-18):4480-4495.
|
[20] |
POREH M, TSUEI Y G, CERMAK E. Investigation of a turbulent radial wall jet[J]. Journal of Applied Mechanics, 1967, 34(2):457-463.
|