[1] Jiang Z, Xiao Z L, Shi Y P, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows[J]. Physics of Fluids, 2013, 25(10): 106102.
[2] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference On DNS/LES. Columbus: Greyden Press, 1997: 137-147.
[3] Travin A, Shur M, Strelets M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Berlin: Springer, 2004: 239-254.
[4] Haase W, Braza M, Revell A. DESider-A European effort on hybrid RANS-LES modeling[M]. Berlin: Springer, 2009: 19-139.
[5] Menter F, Kuntz M. Adaption of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: The aerodynamics of heavy vehicles: trucks, buses, and trains[C]//Lecture Notes in Applied and Computational Mechanics. Berlin: Springer, 2004.
[6] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theory Computation Fluid Dynamics, 2006, 20(3): 181-195.
[7] Nikitin N, Nicoud F, Wasistho B, et al. An approach to wall modeling in large-eddy simulations[J]. Physics of Fluids, 2000, 12(7): 1629-1632.
[8] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[9] Bui T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flow[J]. Computers & Fluids, 2000, 29(8): 877-915.
[10] Deng X B, Zhao X H, Yang W, et al. Dynamic adaptive upwind method and it's applications in RANS/LES hybrid simulations[C]//The Eighth International Conference on Computational Fluid dynamics. Mianyang: China Aerodynamics Research and Development Center, 2014: 807-814.
[11] Frink N T. Recent progress toward a three dimensional unstructured Navier-Stokes flow solver, AIAA-1994-0061[R]. Reston: AIAA, 1994.
[12] Hughes T J R, Franca L P, Hulbert G M. A new finite element formulation for computational fluid dynamics VIII: The Galerkin least squares method for advective- diffusive equations[J]. Computer Methods in Applied Mechanics and Engineering, 1989, 73(2): 173-189.
[13] Bassi F, Crivellini A, Rebay S, et al. Discontinuous Galerkin solutions of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[J]. Computers & Fluids, 2005, 34(4-5): 507-540.
[14] Zhang L P, Liu W, He L X, et al. A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems[J]. Journal of Computational Physics, 2012, 231(4): 1081-1103.
[15] Zhang L P, Liu W, He L X, et al. A class of hybrid DG/FV methods for conservation laws II: Two-dimensional cases[J]. Journal of Computational Physics, 2012, 231(4): 1104-1120.
[16] Zhang L P, Liu W, He L X, et al. A class of hybrid DG/FV methods for conservation laws III: Two-dimensional Euler equations[J]. Journal of Computational Physics, 2012, 12(1): 284-314.
[17] Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation[J]. Journal of Computational Physics, 2002, 178(2): 210-251.
[18] Wang Z J, Liu Y. The spectral difference method for the 2D Euler equations on unstructured grids, AIAA-2005-5112[R]. Reston: AIAA, 2005.
[19] Huynh H T. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion, AIAA-2009-0403[R]. Reston: AIAA, 2009.
[20] Zhang L P, Wang Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7): 891-916.
[21] Zhang L P, Zhao Z, Chang X H, et al. A 3D hybrid grid generation technique and multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1): 47-62.
[22] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[23] Menter F R. Zonal two-equation k-ω turbulence models for aerodynamic flows, AIAA-1993-2906[R]. Reston: AIAA,1993.
[24] Gritskevich M S, Garbaruk A V, Schütze J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence Combust, 2012, 88(3): 431-449.
[25] Lourenco L M, Shih C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study, CTR Annual Research Briefs[R]. Washington, D.C. : NASA, 1994.
[26] Parnaudeau P, Carlier J, Heitz D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8): 085101.
[27] Norberg C. Experimental investigation of the flow around a circular cylinder: influence of aspect ratio[J]. Journal of Fluid Mechanics, 1994, 258: 287-316.
[28] Ma X, Karamanos G S, Karniadakis G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410: 29-65.
[29] Kravchenko A G, Moin P. Numerical studies of flow over a circular cylinder at Re=3900[J]. Physics of Fluids, 2000, 12(2): 403-417.
[30] Li D, Jiao Y Q, Igor M, et al. Detached eddy simulation for airfoil stall[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 406-410 (in Chinese). 李栋, 焦予秦, Igor Men'shov, 等. Detached-Eddy Simulation方法模拟不同类型翼型的失速特性[J]. 航空学报, 2005, 26(4): 406-410.
[31] Swalwell K E, Sheridan J, Melbourne W H. Frequency analysis of surface pressure on an airfoil after stall, AIAA-2003-3416[R]. Reston: AIAA, 2003. |