[1] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J].航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese). [2] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J].Advances in Mechanics, 2011, 41(5):562-589(in Chinese). [3] BLAZEK J. Computational fluid dynamics, principles and applications[M]. 3rd ed. Elsevier, 2015. [4] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J].空气动力学学报, 2016, 34(4):405-417. ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J].Acta Aerodynamica Sinica, 2016, 34(4):405-417(in Chinese). [5] 陈国良, 孙广中, 徐云, 等. 并行计算的一体化研究现状与发展趋势[J].科学通报, 2009, 54(8):1043-1049. CHEN G L, SUN G Z, XU Y, et al. Integrated research of parallel computing:Status and future[J].Chinese Science Bulletin, 2009, 54(8):1043-1049(in Chinese). [6] 王涛."天河二号"超级计算机[J].科学, 2013, 65(4):52. WANG T. "Tianhe 2" supercomputer[J].Science, 2013, 65(4):52(in Chinese). [7] 张云泉. 2015年中国高性能计算机发展现状分析与展望[J].科研信息化技术与应用, 2015, 6(6):83-92. ZAHNG Y Q. State-of-art analysis and perspectives of 2015 China HPC[J].E-science Technology & Application, 2015, 6(6):83-92(in Chinese). [8] 杨广文, 赵文来, 丁楠, 等. "神威·太湖之光"及其应用系统[J].科学, 2017, 69(3):12-16. YANG G W, ZHAO W L, DING N, et al. "Sunway TaihuLight" supercomputer and its application systems[J].Science, 2017, 69(3):12-16(in Chinese). [9] 张云泉. 2018年中国高性能计算机发展现状分析与展望[J].计算机科学, 2019, 46(1):1-5. ZHANG Y Q. State-of-the-art analysis and perspectives of 2018 China HPC development[J].Computer Science, 2019, 46(1):1-5(in Chinese). [10] TINOCO E N, BRODERSEN O P, KEYE S, et al. Summary of data from the sixth AIAA CFD Drag Prediction Workshop:CRM Cases 2 to 5:AIAA-2017-1208[R]. Reston:AIAA, 2017. [11] HE X, ZHAO Z, MA R, et al. Validation of HyperFLOW in subsonic and transonic flow[J].Acta Aerodynamica Sinica, 2016, 34(2):267-275. [12] HE X, HE X Y, HE L, et al. HyperFLOW:A structured/unstructured hybrid integrated computational environment for multi-purpose fluid simulation[J].Procedia Engineering, 2015, 126:645-649. [13] 赵钟, 张来平, 何磊, 等. 适用任意网格的大规模并行CFD计算框架PHengLEI[J].计算机学报, 2019, 42(11):2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:A large scale parallel CFD framework for arbitrary grids[J].Chinese Journal of Computers, 2019, 42(11):2368-2383(in Chinese). [14] 王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进[J].力学学报, 2018, 50(3):527-537. WANG N H, LI M, ZHANG L P. Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization[J].Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3):527-537(in Chinese). [15] CHAPMAN B, JOST G, VAN DER PAS R. Using OpenMP, portable shared memory parallel programming[M]. Cambridge:The MIT Press, 2010:115-118. [16] ZHAO Z, ZHANG Y, HE L, et al. A large-scale parallel hybrid grid generation technique for realistic complex geometry[J].International Journal for Numerical Methods in Fluids, 2020(in Press) [17] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J].航空学报, 2018, 39(6):48-58. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(6):48-58(in Chinese). [18] 常兴华, 王年华, 马戎, 等. 并行重叠/变形混合网格生成技术及其应用[J].气体物理, 2019, 4(6):12-21. CHANG X H, WANG N H, MA R, et al. Dynamic hybrid mesh generator coupled with overset and deformation in parallel environment[J].Physics of Gases, 2019, 4(6):12-21(in Chinese). [19] CHANG X H, MA R, WANG N H, et al. A parallel implicit hole-cutting method based on background mesh for unstructured chimera grid[J].Computers and Fluids, 2020, 198:104403. [20] ZHANG L P, CHANG X H, MA R, et al. A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model[J].Chinese Journal of Aeronautics, 2019, 32(12):2577-2591. [21] HALL L H, PARTHASARATHY V. Validation of an automated Chimera/6-DOF methodology for multiple moving body problems[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998. [22] 赵钟, 何磊, 张健, 等. 湍流模拟壁面距离MPI/OpenMP混合并行计算方法[J].空气动力学学报, 2019, 37(6):883-892. ZHAO Z, HE L, ZHANG J, et al. MPI/OpenMP hybrid parallel computation of wall distance for turbulence flow simulations[J].Acta Aerodynamica Sinica, 2019, 37(6):883-892(in Chinese). [23] 王刚, 曾铮, 叶正寅. 混合非结构网格下壁面最短距离的快速计算方法[J].西北工业大学学报, 2014(4):511-516. WANG G, ZENG Z, YE Z Y. An efficient search algorithm for calculating minimum wall distance of unstructured mesh[J].Journal of Northwestern Polytechnical University, 2014(4):511-516(in Chinese). [24] XU C F, DENG X G, ZHANG L L, et.al. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer[J].Journal of Computational Physics, 2014, 278:275-297. |