[1] SLOTNICK J, ABDOLLAH K, JUAN A, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA-CR-218178[R]. Washington, D.C.:NASA, 2014.
[2] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference On DNS/LES. Columbus:Greyden Press, 1997:137-147.
[3] BAKER T J. Mesh generation:Art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[4] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modeling[M]. Berlin:Springer, 2009:19-139.
[5] BAKER T J. Mesh adaptation strategies for problems in fluid dynamics[J]. Finite Elements in Analysis and Design, 1997, 25(3-4):243-273.
[6] MAVRIPLIS D J. Unstructured mesh generation and adaptivity:NASA-CR-195069[R]. Washington, D.C.:NASA, 1995.
[7] LOHNER R. Adaptive h-refinement on 3D unstructured grids for transient problems[J]. International Journal for Numerical Methods in Fluids, 1992, 14(12):1407-1419.
[8] MAVRIPLIS D J. Adaptive meshing techniques for viscous flow calculation on mixed element unstructured meshes[J]. International Journal for Numerical Methods in Fluids, 2000, 34(2):93-111.
[9] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston:AIAA, 2005.
[10] HE X, ZHANG L P, ZHAO Z, et al. Research and development of structured/unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(S):116-120.
[11] HE X, ZHANG L P, ZHAO Z, et al. Validation of the structured/unstructured hybrid CFD software-HyperFLOW[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:920-931.
[12] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[13] TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Berlin:Springer, 2004:239-254.
[14] BUI T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flow[J]. Computers & Fluids, 2000, 29(8):877-915.
[15] DENG X B, ZHAO X H, YANG W, et al. Dynamic adaptive upwind method and it's applications in RANS/LES hybrid simulations[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:807-814.
[16] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:1055-1073.
[17] 张扬, 张来平, 赫新, 等. 基于非结构/混合网格的脱体涡模拟算法[J]. 航空学报, 2015, 36(9):2900-2910. ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation based on unstructured and hybrid grid[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2900-2910(in Chinese).
[18] ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation of subsonic flow past a delta wing[J]. Procedia Engineering, 2015(126):584-587.
[19] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[20] VENKATAKRISHNAN V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J]. Journal of Computational Physics, 1995, 118(1):120-130.
[21] ZHANG L P, WANG Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7):891-916.
[22] ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1):47-62.
[23] RUMSEY C, WEDAN B, HAUSER T, et al. Recent updates to the CFD General Notation System (CGNS):AIAA-2012-1264[R]. Reston:AIAA, 2012.
[24] CHU J, LUCKRING J M. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges:NASA-TM-4645[R]. Washington, D. C.:NASA, 1996. |