[1] DURST F, MILOIEVIC D, SCHÖNUNG B. Eulerian and lagrangian predictions of particulate two-phase flows:A numerical study[J]. Applied Mathematical Modelling, 1984, 8(2):101-115. [2] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42. [3] MACARTHUR C D. Numerical simulation of airfoil ice accretion:AIAA-1983-0112[R]. Reston, VA:AIAA, 1983. [4] AL-KHALIL K M, HORVATH C, MILLER D R, et al. Validation of NASA thermal ice protection computer codes. Ⅲ-The validation of ANTICE:AIAA-1997-0051[R]. Reston, VA:AIAA, 1997. [5] MORENCY F, BRAHIMI M T, TEZOK F, et al. Hot air anti-icing system modelization in the ice predict ion code CANICE:AIAA-1998-0192[R]. Reston, VA:AIAA, 1998. [6] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅰ-Mathematical modeling[J]. Journal of Aircraft, 2007, 44(2):627-634. [7] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅱ-Implementation and results[J]. Journal of Aircraft, 2007, 44(2):635-641. [8] ROTH J R, SHERMAN D M, WILKINSON S P.Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma:AIAA-1998-0328[R]. Reston, VA:AIAA, 1998. [9] WINKEL R, CORREALE G, KOTSONIS M. Effect of dielectric material on thermal effect produced by ns-DBD plasma actuator:AIAA-2014-2119[R]. Reston, VA:AIAA, 2014. [10] ERFANI R, HALE C, KONTIS K. The influence of electrode configuration and dielectric temperature on plasma actuator performance:AIAA-2011-0955[R]. Reston, VA:AIAA, 2011. [11] NUDNOVA M, KINDUSHEVA S, ALEKSAHDROV N, et al. Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge:AIAA-2010-0465[R]. Reston, VA:AIAA, 2010. [12] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185. [13] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365. [14] SHANG J S, MENART J, KIMMEL R, et al. Hypersonic inlet with plasma induced compression:AIAA-2006-0764[R]. Reston, VA:AIAA, 2006. [15] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface DBD:AIAA-2011-1144[R]. Reston, VA:AIAA, 2011. [16] GALLEY D, PILLA G, LACOSTE D, et al. Plasma-enhanced combustion of a lean premixed air-propane turbulent flame using a nanosecond repetitively pulsed plasma:AIAA-2005-1193[R]. Reston, VA:AIAA, 2005. [17] MIZOKAMI T, NOGUCHI D, FUKAGATA K. Lift and drag control using dielectric barrier discharge plasma actuators installed on the wingtips:AIAA-2013-2456[R]. Reston, VA:AIAA, 2013. [18] FONT G I, JUNG S, ENLOE C L, et al. Simulation of the effects of force and heat produced by a plasma actuator on neutral flow evolution:AIAA-2006-0167[R]. Reston, VA:AIAA, 2006. [19] ORLOV D M, CORKE T C, PATEL M P. Electric circuit model for aerodynamic plasma actuator:AIAA-2006-1206[R]. Reston, VA:AIAA, 2006. [20] BOUEF J P, LAGMICH Y, CALLEGARI T, et al. Electro hydro dynamic force and acceleration in surfaces discharges:AIAA-2006-3574[R]. Reston, VA:AIAA, 2006. [21] UNFER T, BOEUF J P. Modelling of a nanosecond surface discharge actuator[J]. Journal of Physics D:Applied Physics, 2009, 42(19):194017-194028. [22] SUZEN Y B, HUANG P G, JACOB J D, et al. Numerical simulations of plasma based flow control applications:AIAA-2005-4633[R]. Reston, VA:AIAA, 2005. [23] 赵光银, 李应红, 梁华, 等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J].物理学报, 2015, 64(1):015101-015111. ZHAO G Y, LI Y H, LIANG H, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control[J]. Acta Physica Sinica, 2015, 64(1):015101-015111(in Chinese). [24] CHEN Z L, HAO L Z, ZHANG B Q. A model for nanosecond pulsed dielectric barrier discharge actuator and its investigation on the mechanisms of separation control over an airfoil[J]. Science China Technological Sciences, 2013, 56(5):1055-1065. [25] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102. [26] TRAN P, BRAHIMI M T, PARASCHIVOIU I, et al. Ice accretion on aircraft wings with thermodynamics effects:AIAA-1994-0605[R]. Reston, VA:AIAA, 1994. [27] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2152-2158(in Chinese). [28] TAKASHIMA K, ZUZEEK Y, LEMPERT W R, et al. Characterization of surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses:AIAA-2010-4764[R]. Reston, VA:AIAA, 2010. [29] FORTIN G, ILINCA A, LAFORTE J, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling:AIAA-2003-1076[R]. Reston, VA:AIAA, 2003. [30] SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA lewis icing research tunnel:AIAA-1992-0647[R]. Reston, VA:AIAA, 1992. [31] STARIKOVSKⅡ A Y, ROUPASSOV D V, NIKIPELOV A A, et al. Acoustic noise and flow separation control by plasma actuator:AIAA-2009-0695[R]. Reston, VA:AIAA, 2009. |