[1] Jiang C H, Sun Z Y, Wang X. Critical technologies for aero-engine prognostics and health management systems development. Journal of Aerospace Power, 2009, 24(11): 2589-2594. (in Chinese) 姜彩虹, 孙志岩, 王曦. 航空发动机预测健康管理系统设计的关键技术. 航空动力学报, 2009, 24(11): 2589-2594.[2] Wei X K, Feng Y, Liu F, et al. Development strategy and key prognostics health management technologies for military aero-engine in China. Journal of Aerospace Power, 2011, 26(9): 2107-2115. (in Chinese) 尉询楷, 冯悦, 刘芳, 等. 军用航空发动机PHM发展策略及关键技术. 航空动力学报, 2011, 26(9): 2107-2115.[3] Li X B, Cui X L, Lang R L. Forecasting method for aeroengine performance parameters. Journal of Beijing University Aeronautics and Astronautics, 2008, 34(3): 253-256. (in Chinese) 李晓白, 崔秀伶, 郎荣玲. 航空发动机性能参数预测方法. 北京航空航天大学学报, 2008, 34(3): 253-256.[4] Xu Z P, Lang R L, Deng X L. Uncertainty analysis of aircraft flight parameters prediction. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1100-1107. (in Chinese) 许喆平, 郎荣玲, 邓小乐. 飞机性能参数预测的不确定性处理. 航空学报, 2012, 33(6): 1100-1107.[5] Gan M L, Yang Z. Time-series modeling and fault forecast study spectral analysis of lubricating oil. Transactions of Nanjing University of Aeronautics & Astronautics, 2001, 18(1): 86-90.[6] Yang Y W, Chen G. Modeling of spectrometric oil analysis data based on structure self adaptive RBF neural network. Chinese Journal of Scientific Instrument, 2006, 27(1): 98-101. (in Chinese) 杨虞微, 陈果. 基于结构自适应径向基神经网络的油样光谱数据建模. 仪器仪表学报, 2006, 27(1): 98-101.[7] Ding G, Fu X Y, Zhong S S. Aeroengine performance parameters prediction based on process neural network. Computer Integrated Manufacturing Systems, 2011, 17(1): 198-207. (in Chinese) 丁刚, 付旭云, 钟诗胜. 基于过程神经网络的航空发动机性能参数预测. 计算机集成制造系统, 2011, 17(1): 198-207.[8] Wei X K, Li Y H, Wang S, et al. Aeroengine lubrication monitoring analysis via support vector machines. Journal of Aerospace Power, 2004, 19(3): 392-397. (in Chinese) 尉询楷, 李应红, 王硕, 等. 基于支持向量机的航空发动机滑油监控分析. 航空动力学报, 2004, 19(3): 392-397.[9] Li B W, Zhang Y, Sun T. Design of forecasting model for aero engine lubrication debris support vector machines based on immune-particle swarm optimization algorithm. Journal of Aerospace Power, 2009, 24(7): 1639-1643. (in Chinese) 李本威, 张赟, 孙涛. 基于免疫粒子群算法的滑油屑末支持向量机预测模型设计. 航空动力学报, 2009, 24(7): 1639-1643.[10] Zhang X, Wang H L. Condition time series prediction using least squares support vector machine with adaptive embedding dimension. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2309-2314. (in Chinese) 张弦, 王宏力. 嵌入维数自适应最小二乘支持向量机状态时间序列预测方法. 航空学报, 2010, 31(12): 2309-2314.[11] Xu K, Xu J W, Ban X J. Forecasting of some non-stationary time series based on wavelet decomposition. Acta Electronica Sinica, 2001, 29(4): 566-568. (in Chinese) 徐科, 徐金梧, 班晓娟. 基于小波分解的某些非平稳时间序列预测方法. 电子学报, 2001, 29(4): 566-568.[12] Zhang X, Wang H L. Failure rate time series prediction based on support vector empirical mode decomposition. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 480-487. (in Chinese) 张弦, 王宏力. 基于支持向量经验模态分解的故障率时间序列预测. 航空学报, 2011, 32(3): 480-487.[13] Tipping M E. The relevance vector machine//Advances in neural information processing systems 12. Cambridge, USA: MIT Press, 2000: 652-658.[14] Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1(3): 211-244.[15] Tipping M E, Faul A C. Fast marginal likelihood maximisation for sparse Bayesian models. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, 2003: 1-13.[16] Gong Z Q, Zou M W, Gao X Q, et al. On the difference between empirical mode decomposition and wavelet decomposition in the nonlinear time series. Acta Physica Sinica, 2005, 54(8): 3947-3957. (in Chinese) 龚志强, 邹明玮, 高新全, 等. 基于非线性时间序列分析经验模态分解和小波分解异同性的研究. 物理学报, 2005, 54(8): 3947-3957.[17] Refaeilzadeh P, Tang L, Liu H. Cross-validation//Liu L, Ozsu M T. Encyclopedia of database systems. New York: Springer, 2009: 532-538.[18] Chen G, Yan F, Gong X, et al. State estimate based on parameter-optimized least squares support vector machines. Power System Protection and Control, 2011, 39(19): 83-88. (in Chinese) 陈刚, 闫飞, 龚啸, 等. 基于参数优化的最小二乘支持向量机状态估计方法. 电力系统保护与控制, 2011, 39(19): 83-88.[19] Sun J. Particle swarm optimization with particles having quantum behavior. Wuxi: School of Internet of Things Engineering, Jiangnan University, 2009. (in Chinese) 孙俊. 量子行为粒子群优化算法研究. 无锡: 江南大学物联网工程学院, 2009.[20] Luan S G. Aeroengine condition monitoring technique and system based on gas path parameter sample. Harbin: School of Mechanical and Electrical Engineering, Harbin Institute of Technology, 2008. (in Chinese) 栾圣罡. 基于气路参数样本的航空发动机状态监视方法与系统研究. 哈尔滨: 哈尔滨工业大学机电工程学院, 2008.[21] Yang Y W, Chen G. Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis. Spectroscopy and Spectral Analysis, 2005, 25(8): 1339-1343. (in Chinese) 杨虞微, 陈果. 光谱油样分析监测技术中的神经网络预测方法. 光谱学与光谱分析, 2005, 25(8): 1339-1343. |