航空学报 > 2025, Vol. 46 Issue (24): 232060-232060   doi: 10.7527/S1000-6893.2025.32060

固体力学与飞行器总体设计

高超声速飞行器热结构多学科可靠性优化双层序贯高效算法

秦强1,2, 穆永祥1, 许宇声1, 邱志平1, 王晓军1()   

  1. 1.北京航空航天大学 航空科学与工程学院,北京 100191
    2.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
  • 收稿日期:2025-04-01 修回日期:2025-04-30 接受日期:2025-05-26 出版日期:2025-06-06 发布日期:2025-06-05
  • 通讯作者: 王晓军 E-mail:xjwang@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(12090034);国家自然科学基金(12132001);国家自然科学基金(52192632);强度与结构完整性全国重点实验室自主课题

A double-layer sequential efficient algorithm for multidisciplinary optimization of hypersonic aircraft hot structures

Qiang QIN1,2, Yongxiang MU1, Yusheng XU1, Zhiping QIU1, Xiaojun WANG1()   

  1. 1.School of Aeronautical Science and Engineering,Beihang University,Beijing 100191,China
    2.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
  • Received:2025-04-01 Revised:2025-04-30 Accepted:2025-05-26 Online:2025-06-06 Published:2025-06-05
  • Contact: Xiaojun WANG E-mail:xjwang@buaa.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12090034);Independent Subject of National Key Laboratory of Strength and Structural Integrity

摘要:

高超声速飞行器热结构面临着复杂的服役环境,在其结构设计过程中,采用考虑多场耦合的多学科精细化优化设计方法可以确保飞行器结构在各种复杂工况下具有卓越的性能和可靠性。针对传统多学科优化算法和传统可靠性优化算法效率低下、收敛困难的问题,提出了一种考虑非概率情况的飞行器结构多学科可靠性优化双层序贯高效算法,通过将多学科优化分解为一个主优化问题以及多个子优化问题,实现多学科优化约束间解耦,从而降低了多学科耦合分析在设计优化过程中产生的巨大计算成本,提高了优化效率。接着,对多学科优化最优设计点进行可靠性优化,采用双层嵌套的方式,将确定性优化与可靠性分析解耦,实现大幅提高可靠性优化效率。双层序贯算法将多学科优化扩展到了飞行器结构的可靠性优化问题,不仅实现了加速优化过程,还增强了设计的实用性和效果。最后以高超声速翼面结构优化为例,验证了针对高超声速飞行器结构多学科可靠性优化所提方法的正确性以及优化效率提升。

关键词: 高超声速飞行器结构, 热结构, 多学科耦合, 双层序贯算法, 可靠性优化

Abstract:

The hot structure of hypersonic aircraft operates in a complex service environment. During the structural design process, employing a multi-disciplinary fine optimization design method that considers multi-field coupling can ensure the superior performance and reliability of the aircraft structure under various complex operating conditions. To address the issues of low efficiency and convergence challenges associated with traditional multi-disciplinary optimization algorithms and reliability optimization algorithms, this paper proposes a double-layer sequential optimization algorithm designed specifically for multi-disciplinary reliability optimization of aircraft structures. By decomposing the multi-disciplinary optimization into a primary optimization problem and several subordinate optimization problems associated with individual constraints, the algorithm achieves decoupling of the constraints within the multi-disciplinary optimization framework, thereby enhancing optimization efficiency and significantly mitigating the substantial computational cost incurred by multi-disciplinary coupling analysis during the design optimization process. Subsequently, reliability optimization is performed on the multidisciplinary optimal design points. By employing a double-layer nesting method, deterministic optimization is decoupled from reliability analysis, greatly enhancing the efficiency of reliability optimization. The two-layer sequential optimization algorithm extends multidisciplinary optimization into the realm of aircraft structural reliability optimization, not only expediting the optimization process but also enhancing the practicality and efficacy of the design. Finally, a case study on the optimization of hypersonic airfoil structures is presented to validate the validity of the proposed method and the enhancement in optimization efficiency of multidisciplinary reliability-based design for aircraft structures.

Key words: hypersonic aircraft structure, hot structure, multi-disciplinary coupling, two-layer sequential optimization algorithm, reliability-based optimization

中图分类号: