1 |
VOS J B, RIZZI A, DARRACQ D, et al. Navier-Stokes solvers in European aircraft design[J]. Progress in Aerospace Sciences, 2002, 38(8): 601-697.
|
2 |
武亮, 左向梅. 基于面元修正的机翼非定常气动力分析[J]. 航空计算技术, 2015, 45(6): 83-86.
|
|
WU L, ZUO X M. Unsteady aerodynamics analysis of wing based on panel correction method[J]. Aeronautical Computing Technique, 2015, 45(6): 83-86 (in Chinese).
|
3 |
张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1): 244-254.
|
|
ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 244-254 (in Chinese).
|
4 |
李洁, 刘战合, 王英, 等. 飞行器目标RCS计算方法适用性研究[J]. 战术导弹技术, 2012(1): 38-42, 63.
|
|
LI J, LIU Z H, WANG Y, et al. Research on the applicability of the approach for calculating the RCS of aircraft target[J]. Tactical Missile Technology, 2012(1): 38-42, 63 (in Chinese).
|
5 |
GAO Z H, WANG M L. An efficient algorithm for calculating aircraft RCS based on the geometrical characteristics[J]. Chinese Journal of Aeronautics, 2008, 21(4): 296-303.
|
6 |
HAN Z H, ZHANG K S, LIU J, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils: AIAA-2013-1108[R]. Reston: AIAA, 2013.
|
7 |
ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic and structural optimization of a subsonic-transport wing using surrogate model[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
|
8 |
王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学: 技术科学, 2015, 45(6): 643-653.
|
|
WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica (Technologica), 2015, 45(6): 643-653 (in Chinese).
|
9 |
黄江涛,刘刚,高正红,等 .飞行器多学科耦合伴随系统的现状与发展趋势[J].航空学报, 2020, 41(5): 623404.
|
|
HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese).
|
10 |
黄江涛,周铸,刘刚,等 .飞行器气动/结构多学科延迟耦合伴随系统数值研究[J].航空学报, 2018, 39(5): 121731.
|
|
HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J].Acta Aeronautica et Astronautica Sinica,2018,39(5):121731 (in Chinese).
|
11 |
MARTINS J R. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. Stanford:Stanford Stanford University, 2002.
|
12 |
CHARLES M, GAETAN K, JOAQUIN M. Towards high-fidelity aerostructural optimization using a coupled adjoint approach[C]∥12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
|
13 |
ABU-ZURAYK M. Constrained aero-elastic multi-point optimization using the coupled adjoint approach[C]∥ MUSAF II Colloquium, 2013.
|
14 |
LEOVIRIYAKIT K, JAMESON A. Case studies in aero-structural wing planform and section optimization[C]∥ 22nd Applied Aerodynamics Conference and Exhibit. Reston: AIAA, 2004.
|
15 |
黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505.
|
|
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese).
|
16 |
ABU-ZURAYK M, BREZILLON J. Shape optimization using the aerostructural coupled ajoint approach for viscous flows[C]∥ Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011.
|
17 |
MARCELET M, PETER J, G´ CARRIER. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods: AIAA-2008-5863[R]. Reston: AIAA, 2008.
|
18 |
GHAZLANE I, CARRIER G, DUMONT A. Aerostructural adjoint method for flexible wing optimization AIAA-2012-1924[R]. Reston: AIAA, 2012.
|
19 |
HUANG J, YU J, GAO Z, et al. Multi-disciplinary optimization of large civil aircraft using a coupled aero-structural adjoint approach[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1042-1054.
|
20 |
ZHOU L, HUANG J T, GAO Z H. Radar cross section gradient calculation based on adjoint equation of method of moment[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1427-1445.
|
21 |
HARRINGTON F. Field computation by moment methods[M]. New York: Wiley-IEEE Press, 1993.
|
22 |
黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562.
|
|
HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562 (in Chinese).
|
23 |
ERGUL O, GUREL L. Iterative solutions of electromagnetics problems with MLFMA [M]. New York : Wiley-IEEE Press, 2014: 177-268.
|
24 |
ROKHLIN V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics, 1990, 86(2): 414-439.
|
25 |
SPEKREIJSE S, PRANANTA B, KOK J. A simple, robust and fast algorithm to compute deformations of multi-block structured grids: NLR-TP-2002-105 [R]. Netherlands: National Aerospace Laboratory, 2002.
|
26 |
朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000.
|
|
ZHU X X. Free-form curve and surface modeling technology[M]. Beijing: Science Press, 2000 (in Chinese).
|
27 |
HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348.
|
28 |
ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal, 2020, 58(6): 2702-2715.
|