航空学报 > 2024, Vol. 45 Issue (11): 529572-529572   doi: 10.7527/S1000-6893.2024.29572

火箭基组合循环发动机热结构技术研究进展

秦飞1,2, 赵征1,2, 何国强1,2, 景婷婷1,2(), 孙星1,2, 魏祥庚1,2   

  1. 1.西北工业大学 航天学院,西安 710072
    2.固体推进全国重点实验室,西安 710072
  • 收稿日期:2023-09-13 修回日期:2023-11-06 接受日期:2024-04-25 出版日期:2024-05-17 发布日期:2024-05-15
  • 通讯作者: 景婷婷 E-mail:tinajing@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(52106055)

Thermal structure technology development of rocket based combined cycle engine

Fei QIN1,2, Zheng ZHAO1,2, Guoqiang HE1,2, Tingting JING1,2(), Xing SUN1,2, Xianggeng WEI1,2   

  1. 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Solid Rocket Propulsion,Xi’an 710072,China
  • Received:2023-09-13 Revised:2023-11-06 Accepted:2024-04-25 Online:2024-05-17 Published:2024-05-15
  • Contact: Tingting JING E-mail:tinajing@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52106055)

摘要:

宽速域、大空域、高比冲的火箭基组合循环发动机作为实现未来水平起降可重复使用天地往返运输系统、临近空间高速飞行平台等新型空天飞行器的主要动力系统之一,近年在宽域燃烧组织、模态过渡控制、高效热防护等关键技术方面取得了诸多进展,但在发动机热结构技术方面,由于新型空天飞行器要求动力系统工作速域更宽、结构系数更低,而发动机热结构设计面临宽域飞发任务耦合特性强、时空非均匀力热环境复杂、薄壁结构轻量化难度大、多次重复使用等难题,因此,必须一方面通过飞发总体参数匹配研究确定合理的发动机热结构指标约束,另一方面多角度提升发动机热结构设计水平和指标能力边界。首先,将国外以典型火箭基组合循环发动机为动力的空天飞行器作为对象,分析了入轨方式对动力系统热结构指标需求的影响规律,并梳理了GTX、Strutjet两款典型发动机的热防护与热结构方案,进而通过发动机燃烧组织与热环境分布特征分析,介绍了主被动结构热防护、高温结构可变可调、结构重复使用与健康管理三类关键技术的研究进展。

关键词: 空天飞行器, 火箭基组合循环发动机, 主动热防护, 轻质热结构, 可重复使用

Abstract:

As one of the principal propulsion systems for the development of future horizontal take-off and landing reusable earth-to-orbit transportation systems and near-space high-speed flight platforms, the rocket based combined cycle engine with a broad speed range, extensive altitude range, and high specific impulse has made considerable progress in the key technologies such as wide-area combustion organization, mode transition control, and high-efficiency thermal protection in recent years. However, in terms of engine thermal structure technology, the future aerospace vehicle is required to work in a wider speed range and lower structural coefficient, which places significant challenges on the engine thermal structure design, as the issues such as the strong coupling characteristics of integrated flight and propulsion systems, complex spatial and temporal non-uniform thermal environments, ultra-light weight reduction, and reuse and health monitoring can be encountered. Thus, it is essential to ascertain the optimal engine thermal structure constraints through the investigation of the overall parameters, and enhance the engine thermal structure design capability through various technologies. This paper initially considers the typical foreign rocket based combined cycle engine-powered space vehicles, and analyses the influence of the orbiting mode on the thermal structure index demand of the propulsion system. Then the thermal protection and thermal structure schemes of the GTX and Strutjet engines are examined. Finally the characteristics of the combustion organization of the engine and the distribution of the thermal environment are analyzed, and the research progress of three key technologies, namely, active-passive structure thermal protection, geometrical variable high temperature structure, and reusable thermal structure, is presented.

Key words: earth-to-orbit aerospace vehicle, rocket based combined cycle engine, active thermal protection, lightweight thermal structure, reusability

中图分类号: