丁玉临1,2, 韩忠华1,2(), 乔建领1,2, 聂晗1,2, 宋文萍1,2, 宋笔锋1,2
收稿日期:
2021-09-02
修回日期:
2021-09-24
接受日期:
2021-10-12
出版日期:
2023-01-25
发布日期:
2021-10-14
通讯作者:
韩忠华
E-mail:hanzh@nwpu.edu.cn
基金资助:
Yulin DING1,2, Zhonghua HAN1,2(), Jianling QIAO1,2, Han NIE1,2, Wenping SONG1,2, Bifeng SONG1,2
Received:
2021-09-02
Revised:
2021-09-24
Accepted:
2021-10-12
Online:
2023-01-25
Published:
2021-10-14
Contact:
Zhonghua HAN
E-mail:hanzh@nwpu.edu.cn
Supported by:
摘要:
超声速民机已成为世界民机未来发展的主要方向之一。超声速民机由于涉及声爆等一系列特殊的技术问题,比亚声速民机的性能要求更苛刻,对总体气动布局设计提出了更高要求。首先,根据设计思想和主要技术特点,将世界迄今为止的代表性超声速民机布局方案划分为三代:第1代布局主要旨在实现民用超声速飞行并兼顾高低速性能,基本为三角翼/双三角翼布局;第2代布局更加重视低声爆/低阻性能,主要采用大后掠箭形翼布局;第3代布局在低声爆/低阻要求基础上,更加注重多学科综合性能和技术可行性,主要采用“大后掠机翼+鸭翼/T尾/V尾布局和发动机短舱背负式/尾吊式”的布局。其次,梳理了新一代超声速民机总体气动布局设计目前面临的技术瓶颈和难点,对总体设计技术、低声爆设计技术、超声速减阻技术和飞-发一体化设计技术的国内外研究进展和现状进行了综述和分析。最后,展望了新一代超声速民机总体气动布局的发展趋势,针对仍需突破的关键科学与技术问题,探讨了重要研究方向。未来将优先发展超声速公务机或中小型超声速民机,其布局技术特点趋近于第3代布局,声爆、减阻、飞-发一体化、起降噪声、气动弹性、人机功效等方面的综合性能和工程可实现性将成为重点研究对象。
中图分类号:
丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310.
Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310.
1 | AIRBUS. Growing horizons 2017-2036[R]. Toulouse: Airbus S. A.S., 2017. |
2 | TINSETH R. Current market outlook 2017-2036[R]. Chicago: Boeing Commercial Airplanes, 2017. |
3 | NASA Aeronautics Research Mission Directorate. NASA aeronautics: Strategic implementation plan-2019 update: NASA NP-2017-01-2352-HQ[R]. Washington, D.C.: NASA, 2019. |
4 | 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046. |
WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046 (in Chinese). | |
5 | 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计[M].北京: 科学出版社, 2022: 189-192. |
HAN Z H, QIAN Z S, QIAO J L. Sonic-boom prediction and low-boom design method [M]. Beijing: Science Press, 2022: 189-192 (in Chinese). | |
6 | 冯晓强. 超声速客机低声爆机理及设计方法研究[D]. 西安: 西北工业大学, 2014: 3-4. |
FENG X Q. Study on mechanism and design method of supersonic passenger plane’s low sound explosion[D]. Xi’an: Northwestern Polytechnical University, 2014: 3-4 (in Chinese). | |
7 | CHUDOBA B, COLEMAN G, ROBERTS K, et al. What price supersonic speed? -A design anatomy of supersonic transportation-part 1[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
8 | CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power, 2004, 20(1): 59-68. |
9 | PEIREN G. Tu-144 supersonic transport[J]. Civil Aircraft Design and Resarch, 2015(3): 99-102. |
10 | BISPLINGHOFF R L. The supersonic transport[J]. Scientific American, 1964, 210(6): 25-35. |
11 | RAY E J. NASA supersonic commercial air transport (SCAT) configurations: A summary and index of experimental characteristics: NASA TM X-1329 [R]. Washington, D.C.: NASA, 1967. |
12 | CONWAY E M. High-speed dreams: NASA and the technopolitics of supersonic transportation, 1945–1999[M]. Baltimore: Johns Hopkins University Press, 2005: 866-867. |
13 | KRESSNER W K H. The 2707 supersonic transport[J]. Proceedings of the IEEE, 1968, 56(4): 682-691. |
14 | HEPPE R R, ENGLEBRY C R. An account of the design philosophy of the Lockheed SST project[J]. Aircraft Engineering and Aerospace Technology, 1967, 39(1): 25-38. |
15 | ROWE W T. Technology status for an advanced supersonic transport[C]∥SAE Technical Paper Series. NewYork: SAE International, 1982. |
16 | MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom six decades of research: NASA SP-622 [R]. Washington, D.C.: NASA, 2014. |
17 | BAIZE D G. The 1995 NASA high-speed research program sonic boom workshop: NASA-CP-3335-Vol-1 [R]. Washington, D.C.: NASA, 1996. |
18 | BOEING COMMERCIAL AIRPLANES. High-speed civil transport study: NASA-CR-4233[R]. Washington, D.C.: NASA, 1989. |
19 | DOUGLAS AIRCRAFT COMPANY. Study of high-speed civil transports: NASA CR-1989-4235[R]. Washington, D.C.: NASA, 1989. |
20 | BOEING COMMERCIAL AIRPLANES. High-speed civil transport study. Summary: NASA-CR-4234[R]. Washington, D.C.: NASA, 1989. |
21 | GREEN P K, PACULL M, REIMERS H D. European 2nd generation supersonic commercial transport aircraft[C]∥Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996. |
22 | YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high speed commercial transport: NAL SP-34 [R]. Tokyo: National Aerospace Laboratory, 1997. |
23 | SCOTT G A, MICHAEL C F. F-16XL-2 supersonic laminar flight test experiment: NASA/TP-1999-209683[R]. Washington, D.C.: NASA, 1999. |
24 | WOOD R M. First NASA/industry high-speed research configuration aerodynamics workshop:NASA/CP-1999-209690/PT3 [R]. Washington, D.C.: NASA, 1999. |
25 | ALAN W W, ROBERT J S. An overview of NASA’s high-speed research program[C]∥Proceedings of the 22nd International Congress of the Aeronautical Science,2000. |
26 | DAVID A M. High-speed research: 1994 sonic boom workshop: NASA/CP-1999-209699 [R]. Washington, D.C.: NASA, 1999. |
27 | SCHRAGE D, MAVRIS D. Integrated design and manufacturing for the high speed civil transport[C]∥Aircraft Design, Systems, and Operations Meeting. Reston: AIAA, 1993. |
28 | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]∥28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
29 | LIEBHARDT B, LÜTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner - A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
30 | MICHAEL B.Conceptual design of a quiet supersonic technology airliner[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
31 | RICHWINE D, BRANDON J. Quiet supersonic technology (QueSST) aircraft preliminary design status and low-boom flight demonstration (LBFD) project update[C]∥48th AIAA Fluid Dynamics Conference. Reston: AIAA, 2018. |
32 | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
33 | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
34 | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J/OL]. 航空学报, (2021-08-04)[2021-09-29]. . |
ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation and mitigation mechanism[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-08-04) [2021-09-29]. (in Chinese). | |
35 | TODD E M, STEPHEN G S, SPENCER R F. Experimental validations of a low-boom aircraft design[C]∥16th AIAA Aerospace Sciences Meeting including the New Horizous Forum and Aerospace Exposition. Reston: AIAA, 2013. |
36 | HARRY R W, CHET N, JIMMY T. N+2 supersonic concept development and systems integration: NASA/CR-2010-216842[R]. Washington, D.C.: NASA, 2010. |
37 | MORGENSTERN J, NORSTRUD N, SOKHEY J, et al. Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period Phase I Final Report: NASA/CR-2013-217820[R]. Washington, D.C.: NASA, 2013. |
38 | TODD E M, PETER A W, SPENCER R F, et al. System-level experimental validations for super-sonic commercial transport aircraft entering service in the 2018-2020 time period: NASA/CR–2013-217797[R]. Washington, D.C.: NASA, 2013. |
39 | HARRY W C, RAYMOND L B, ROBERT J M. Application of sonic-boom minimization concepts in supersonic transport design: NASA TN, D-7218[R]. Washington, D.C.: NASA, 1973. |
40 | BAIZE D G. 1995 NASA high-speed research program sonic boom workshop Volume II-Configuration design, analysis, and testing: NASA/CP-1999-209520/VOL2[R]. Washington, D.C.: NASA, 1999. |
41 | SUN Y C, SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90: 12-38. |
42 | DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: NASA TP-1348[R]. Washington, D.C.: NASA, 1979. |
43 | ARONSTEIN D C, SCHUELER K L. Two supersonic business aircraft conceptual designs with and without sonic boom constraint[J]. Journal of Aircraft, 2005, 42(3): 775-786. |
44 | BHATIA K, WERTHEIMER J. Aeroelastic challenges for a high speed civil transport[C]∥34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1993. |
45 | SILVA W A, DE LA GARZA A, ZINK P S, et al. An overview of the NASA high speed ASE project: Aeroelastic analyses of a low-boom supersonic configuration[C]∥56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. |
46 | PAK C G. Aeroelastic tailoring study of an N+2 low-boom supersonic commercial transport aircraft[C]∥16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2015. |
47 | CONNOLLY J W, KOPASAKIS G, CHWALOWSKI P, et al. Aero-propulso-elastic analysis of a supersonic transport[J]. Journal of Aircraft, 2020, 57(4): 569-585. |
48 | SILVA W A, SANETRIK M D, CHWALOWSKI P. Computational aeroelastic analyses of a low-boom supersonic configuration[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015. |
49 | NIKBAY M, STANFORD B, WEST T K, et al. Impact of aeroelastic uncertainties on sonic boom signature of a commercial supersonic transport configuration[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
50 | PHILLIPS B D, WEST T K. Aeroelastic uncertainty quantification of a low-boom aircraft configuration[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
51 | RANDALL E B, SUSAN J W, JARVIS (TREY) J A III. Conceptual design standards for eXternal Visibility System (XVS) sensor and display resolution: NASA/TM-2012-217340[R]. Washington, D.C.: NASA, 2013. |
52 | BAILEY R E, WILLIAMS S, KIBLER K, et al. eXternal vision system development and testing for X-59 low boom flight demonstrator[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
53 | JONES L B. Lower bounds for sonic Bangs[J]. The Journal of the Royal Aeronautical Society, 1961, 65(606): 433-436. |
54 | JONES L B. Lower bounds for sonic Bangs in the far field[J]. Aeronautical Quarterly, 1967, 18(1): 1-21. |
55 | JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17. |
56 | SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653. |
57 | GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093. |
58 | SEEBASS R, GEORGE A R. Sonic‐boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694. |
59 | PLOTKIN K, RALLABHANDI S, LI W. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping[C]∥47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
60 | HAAS A, KROO I. A multi-shock inverse design method for low-boom supersonic aircraft[C]∥48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
61 | MAKINO Y, SUZUKI K, NOGUCHI M, et al. Nonaxisymmetrical fuselage shape modification for drag reduction of low-sonic-boom airplane[J]. AIAA Journal, 2003, 41(8): 1413-1420. |
62 | JUNG T P, STARKEY R P, ARGROW B. Lobe balancing design method to create frozen sonic booms using aircraft components[J]. Journal of Aircraft, 2012, 49(6): 1878-1893. |
63 | HAGLUND G. HSCT designs for reduced sonic boom[C]∥Aircraft Design and Operations Meeting. Reston: AIAA, 1991. |
64 | GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298. |
65 | 刘刚, 黄江涛, 周铸, 等. 超声速飞行器声爆/气动力综合设计技术研究[J]. 空气动力学学报, 2020, 38(5): 858-865. |
LIU G, HUANG J T, ZHOU Z, et al. Investigation of supersonic low sonic boom aerodynamic configuration design[J]. Acta Aerodynamica Sinica, 2020, 38(5): 858-865 (in Chinese). | |
66 | LI W, SHIELDS E, GEISELHART K. Mixed-fidelity approach for design of low-boom supersonic aircraft[J]. Journal of Aircraft, 2011, 48(4): 1131-1135. |
67 | LI W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36. |
68 | UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
69 | LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
70 | 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. |
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). | |
71 | 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 124916. |
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124916 (in Chinese). | |
72 | ALONSO J, JAMESON A, KROO I. Advanced algorithms for design and optimization of quiet supersonic platforms[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
73 | CHUNG H S, ALONSO J. Design of a low-boom supersonic business jet using cokriging approximation models[C]∥9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
74 | CHAN M K. Supersonic aircraft optimization for minimizing drag and sonic boom[D]. Palo Alto: Stanford University, 2003. |
75 | CHOI S, ALONSO J, KROO I, et al. Multi-fidelity design optimization of low-boom supersonic business jets[C]∥10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004. |
76 | MAKINO Y, KROO I. Robust objective functions for sonic-boom minimization[J]. Journal of Aircraft, 2006, 43(5): 1301-1306. |
77 | FARHAT C, MAUTE K, ARGROW B, et al. Shape optimization methodology for reducing the sonic boom initial pressure rise[J]. AIAA Journal, 2007, 45(5): 1007-1018. |
78 | RALLABHANDI S K, MAVRIS D N. Aircraft geometry design and optimization for sonic boom reduction[J]. Journal of Aircraft, 2007, 44(1): 35-47. |
79 | RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
80 | RALLABHANDI S K. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft, 2014, 51(6): 1873-1882. |
81 | ALONSO J J, COLONNO M R. Multidisciplinary optimization with applications to sonic-boom minimization[J]. Annual Review of Fluid Mechanics, 2012, 44: 505-526. |
82 | BAN N, YAMAZAKI W, KUSUNOSE K. Low-boom/low-drag design optimization of innovative supersonic transport configuration[J]. Journal of Aircraft, 2017, 55(3): 1071-1081. |
83 | KIRZ J. Surrogate based shape optimization of a low boom fuselage wing configuration[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
84 | 冯晓强, 宋笔锋, 李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8): 1768-1777. |
FENG X Q, SONG B F, LI Z K, et al. Hybrid optimization approach research for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1768-1777 (in Chinese). | |
85 | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
86 | ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1380-1389. |
87 | 郝璇, 苏诚, 刘芳, 等. 超声速飞行器低声爆气动布局优化设计研究[J]. 空气动力学学报, 2018, 36(2): 327-333. |
HAO X, SU C, LIU F, et al. Optimization design research on low sonic boom configuration for supersonic transport[J]. Acta Aerodynamica Sinica, 2018, 36(2): 327-333 (in Chinese). | |
88 | 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505. |
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese). | |
89 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
90 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
91 | YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5): 124-146. |
92 | WHITCOMB R T. A study of the zero-lift drag-rise characteristics of wing-body combinations near the speed of sound: NACA-TR-1273[R]. Washington, D.C.: NASA, 1956. |
93 | BUSEMANN A. Aerodynamic lift at supersonic speeds[J]. Luftfahrtforschung, 1935. |
94 | MATSUSHIMA K, MARUYAMA D, KUSUNOSE K. Extension of Busemann biplane theory to three dimensional wing fuselage configurations[C]∥Proceedings of the 27th International Congress of the Aeronautical Sciences. Nice: ICAS, 2010. |
95 | MA B P, WANG G, WU J, et al. Avoiding choked flow and flow hysteresis of busemann biplane by stagger approach[J]. Journal of Aircraft, 2020, 57(3): 440-455. |
96 | 刘荣健, 白鹏. 基于超声速有益干扰原理的气动构型概念综述[J]. 航空学报, 2020, 41(9): 023784. |
LIU R J, BAI P. Concept of aerodynamic configuration based on supersonic favorable interference principle: Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023784 (in Chinese). | |
97 | . |
98 | LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports[C]∥34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
99 | BONS N, MARTINS J R R A, MADER C A, et al. High-fidelity aerostructural optimization studies of the aerion AS2 supersonic business jet[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
100 | SMITH A, Transition GAMBERONI N., gradient pressure, and stability theory: Report ES 26388[R]. Saint Louis: Douglas Aircraft Co.,1956. |
101 | VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary layer transition region: Rapport VTH-74[R]. Delft: Technische Hogeschool Delft, 1956. |
102 | 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2): 213-228. |
SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2): 213-228 (in Chinese). | |
103 | HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7): 2579-2593. |
104 | XU Z M, HAN Z H, CHI J B, et al. Crossflow instability analysis for swept laminar flow wings using crossflow pressure gradient[J]. AIAA Journal, 2021, 59(8): 2878-2889. |
105 | NIE H, SONG W P, HAN Z H, et al. A surrogate-based eN method for compressible boundary-layer transition prediction[J]. Journal of Aircraft, 2021, 59(1): 89-102. |
106 | MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. |
107 | 王亮, 符松. 一种适用于超音速边界层的湍流转捩模式[J]. 力学学报, 2009, 41(2): 162-168. |
WANG L, FU S. A new transition/turbulence model for the flow transition in supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 162-168 (in Chinese). | |
108 | XU J K, QIAO L, BAI J Q. Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3073-3081. |
109 | ARNAL D. Transition prediction in transonic flow[M]∥Symposium transsonicum Ⅲ. Berlin: Springer Berlin Heidelberg, 1989: 253-262. |
110 | UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6): 1294-1306. |
111 | TRAORÉ A, LEMÉE P. Laminar design for supersonic civil transport[M]∥Aerodynamic drag reduction technologies. Berlin: Springer Berlin Heidelberg, 2001: 141-153. |
112 | IULIANO E, QUAGLIARELLA D, DONELLI R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of Aircraft, 2011, 48(4): 1147-1162. |
113 | TRACY R, STURDZA P, KROO I, et al. Natural laminar flow for quiet and efficient supersonic aircraft[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
114 | NOMURA T, KURODA F. Validation of the natural-laminar-flow design for the national experimental supersonic transport[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2002, 45(149): 149-153. |
115 | ISHIKAWA H, UEDA Y, TOKUGAWA N. Natural laminar flow wing design for a low-boom supersonic aircraft[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
116 | HOWE D. Engine placement for sonic boom mitigation[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
117 | ATSUSHI U, YASUSHI W. Propulsion/airframe integration considering low drag and low sonic boom [C]∥29th International Congress of the Aeronautical Sciences. St.Petersburg: ICAS, 2014. |
118 | SLATER J W. Methodology for the design of streamline-traced external-compression supersonic inlets[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. |
119 | OTTO S E, TREFNY C J, SLATER J W. Inward-turning streamline-traced inlet design method for low-boom, low-drag applications[J]. Journal of Propulsion and Power, 2016, 32(5): 1178-1189. |
120 | HEATH C, SLATER J W, RALLABHANDI S K. Inlet trade study for a low boom aircraft demonstrator[C]∥34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
121 | BUSEMANN A. Die achsenssymmetrische kegelige berschallströmung [J]. Luftfahtforschung, 1942, 19(4): 137-144. |
122 | RODRIGUEZ D. Propulsion/airframe integration and optimization on a supersonic business jet[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
123 | 田亚洲, 袁化成, 张玲玲, 等. 流线追踪内转式低音爆进气道的设计方法及流动特征[J]. 推进技术, 2021, 42(8): 1798-1806. |
TIAN Y Z, YUAN H C, ZHANG L L, et al. Designing method and flow characteristic of streamline-traced inward-turning low-boom inlet[J]. Journal of Propulsion Technology, 2021, 42(8): 1798-1806 (in Chinese). | |
124 | BUI T. CFD analysis of the nozzle jet plume effects on sonic boom signature[C]∥47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
125 | CASTNER R. Exhaust nozzle plume effects on sonic boom[J]. Journal of Aircraft, 2012, 49(2): 415-422. |
126 | CASTNER R, LAKE T. Exhaust plume effects on sonic boom for a delta wing and swept wing-body model[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
127 | QIAN Z S, LENG Y, LIU Z C. Engine exhaust nozzle plume effects on the sonic boom for a type of hypersonic long-range civil vehicle[C]∥31th International Congress of the Aeronautical Sciences. Belo Horizonte: ICAS, 2018. |
128 | WINTZER M, CASTNER R S. Airframe-nozzle-plume interactions in the context of low sonic boom design[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
[1] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[2] | 薛栋, 朱紫文, 宋笔锋. 仿鸟扑翼飞行器关键技术综述[J]. 航空学报, 2024, 45(17): 529984-529984. |
[3] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[4] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[5] | 张力文, 宋文萍, 韩忠华, 钱战森, 宋笔锋. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 25649-025649. |
[6] | 袁吉森, 孙爵, 李玲玉, 于晟浩, 聂晗, 高亮杰, 韩忠华, 钱战森. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316-526316. |
[7] | 聂晗, 宋文萍, 韩忠华, 陈坚强, 段茂昌, 万兵兵. 面向超声速民机层流机翼设计的转捩预测方法[J]. 航空学报, 2022, 43(11): 526342-526342. |
[8] | 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 124916-124916. |
[9] | 范周伟, 余雄庆, 王朝, 钟伯文. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021, 42(4): 524353-524353. |
[10] | 刘莉, 曹潇, 张晓辉, 贺云涛. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474-623474. |
[11] | 马东立, 张良, 杨穆清, 夏兴禄, 王少奇. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418-623418. |
[12] | 柴啸, 陈迎春, 谭兆光, 陈真利, 司江涛, 李杰, 张彬乾. 翼身融合布局客机总体参数分析与优化[J]. 航空学报, 2019, 40(9): 623042-623042. |
[13] | 王刚, 张彬乾, 张明辉, 桑为民, 袁昌盛, 李栋. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046-623046. |
[14] | 康焱, 刘刚, 张柏楠, 王倩, 谷巍, 王威. 航天器电缆网快速协同设计方法及关键技术[J]. 航空学报, 2018, 39(7): 322112-322112. |
[15] | 周伟, 李赛, 王学仁, 谢飞. 基于FQFD的太阳能无人机设计指标排序方法[J]. 航空学报, 2018, 39(2): 221299-221299. |
阅读次数 | |||||||||||||||||||||||||||||
全文 1478
|
|
||||||||||||||||||||||||||||
摘要 |
|
||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学