[1] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Aata Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese). [2] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J/OL]. 航空学报, (2021-11-22)[2021-11-25]. https://kns.cnki.net/kcms/detail/11.1929.V.20211122.1025.002.html. DING Y L, HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic cofiguration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, (2021-11-22)[2021-11-25]. https://kns.cnki.net/kcms/detail/11.1929.V.20211122.1025.002.html (in Chinese). [3] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146. [4] International Air Transport Association. Aircraft technology roadmap to 2050[R]. Montreal:International Air Transport Association, 2019. [5] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory:ES 26388[R]. Long Beach:Douglas Aircraft Division, 1956. [6] SARIC W. Physical description of boundary-layer transition:Experimental evidence:19940029379[R]. Paris:AGARD, 1994 [7] ARNAL D. Boundary layer transition:Predictions based on linear theory:AGARD-R-793[R]. Paris:AGARD, 1994. [8] MACK L M. Boundary-layer linear stability theory:19840025688[R]. Paris:AGARD, 1984. [9] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124317(in Chinese). [10] THEOFILIS V. Advances in global linear instability analysis of nonparallel and three-dimensional flows[J]. Progress in Aerospace Sciences, 2003, 39(4):249-315. [11] KOSAREV L, SÉROR S, LIFSHITZ Y. Parabolized stability equations code with automatic inflow for swept wing transition analysis[J]. Journal of Aircraft, 2016, 53(6):1647-1669. [12] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283. [13] XU G L, CHEN J Q, LIU G, et al. The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow[J]. Journal of Fluid Mechanics, 2019, 873:914-941. [14] CHEN X, CHEN J Q, YUAN X X, et al. From primary instabilities to secondary instabilities in Görtler vortex flows[J]. Advances in Aerodynamics, 2019, 1(1):379-391. [15] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355. [16] BÉGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):3648-3660. [17] NIE H, SONG W P, HAN Z H, et al. A surrogate-based eN method for compressible boundary-layer transition prediction[J]. Journal of Aircraft, 2021, 59(1):89-102. [18] ARNAL D, CASALIS G, HOUDEVILLE R. Practical transition prediction methods:Subsonic and transonic flows:AVT-151RTO-8[R]. Belgium:Von Karman Institution, 2008. [19] GLEYZES C, COUSTEIX J, BONNET J L. Theoretical and experimental study of low Reynolds number transitional separation bubbles:UNDAS-CP-77B123[R]. Notre Dame:University of Notre Dame, 1985. [20] ARNAL D, HOUDEVILLE R, SÉRAUDIE A, et al. Overview of laminar-turbulent transition investigations at ONERA Toulouse:AIAA-2011-3074[R]. Reston:AIAA, 2011. [21] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422. [22] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015. [23] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187. [24] TU G H, DENG X G, MAO M L. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4):805-811. [25] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9):625711. XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):625711(in Chinese). [26] PASCAL L, DELATTRE G, DENIAU H, et al. Stability-based transition model using transport equations[J]. AIAA Journal, 2020, 58(7):2933-2942. [27] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese). [28] KRUMBEIN A. Automatic transition prediction and application to three-dimensional wing configurations[J]. Journal of Aircraft, 2007, 44(1):119-133. [29] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 1:Methodology and sensitivities[J]. Journal of Aircraft, 2009, 46(4):1176-1190. [30] KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[J]. Journal of Aircraft, 2011, 48(6):1878-1887. [31] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564. [32] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684. [33] FISCHER J S, SOEMARWOTO B I, VAN DER WEIDE E T A. Automatic transition prediction in a Navier-Stokes solver using linear stability theory[J]. AIAA Journal, 2021, 59(7):2409-2426. [34] 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京:科学出版社, 2015. ZHOU H, SU C H, ZHANG Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layer[M]. Beijing:Science Press, 2015(in Chinese). [35] 唐登斌. 后掠翼可压缩三维边界层稳定性计算[J]. 航空学报, 1992, 13(1):1-7. TANG D B. The calculation of three-dimensional compressible boundary layer stability on swept wings[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(1):1-7(in Chinese). [36] 张坤, 宋文萍. NS方程计算中耦合转捩自动判断的阻力精确计算方法初探[J]. 空气动力学学报, 2009, 27(4):400-404. ZHANG K, SONG W P. Accurate drag calculation by coupling automatic prediction of transition point to the Navier-Stokes method[J]. Acta Aerodynamica Sinica, 2009, 27(4):400-404(in Chinese). [37] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011, 29(1):142-147. ZHANG K, SONG W P. Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):142-147(in Chinese). [38] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese). [39] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese). [40] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [41] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese). [42] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展[J]. 空气动力学学报, 2020, 38(2):368-378. HUANG Z F, WAN B B, DUAN M C. Progresses in engineering application research on hypersonic flow stability and transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):368-378(in Chinese). [43] XU J K, HAN X, QIAO L, et al. Fully local amplification factor transport equation for stationary crossflow instabilities[J]. AIAA Journal, 2019, 57(7):2682-2693. [44] XU J K. Linear amplification factor transport equation for stationary crossflow instabilities in supersonic boundary layers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(6):703-717. [45] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47. [46] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012:706-715. [47] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese). [48] FAN T L, SONG W P, CHEN J, et al. Hybrid optimization design of natural-laminar-flow(NLF) supercritical airfoil and infinite swept wing:AIAA-2017-3061[R]. Reston:AIAA, 2017. [49] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. [50] CHI J B, HAN Z H, FAN T L, et al. Hybrid inverse/optimization design approach for transonic natural-laminar-flow airfoils:AIAA-2019-1475[R]. Reston:AIAA, 2019. [51] XU Z M, HAN Z H, CHI J B, et al. Crossflow instability analysis for swept laminar flow wings using crossflow pressure gradient[J]. AIAA Journal, 2021, 59(8):2878-2889. [52] SCHLICHTING H, GERSTEN K. Boundary layer theory[M]. 9th ed. Berlin, Heidelberg:Springer, 2017:466. [53] UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6):1294-1306. [54] NIU H B, YI S H, LIU X L, et al. Experimental investigation of boundary layer transition over a delta wing at Mach number 6[J]. Chinese Journal of Aeronautics, 2020, 33(7):1889-1902. [55] WAN B B, TU G H, YUAN X X, et al. Identification of traveling crossflow waves under real hypersonic flight conditions[J]. Physics of Fluids, 2021, 33(4):044110. [56] LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports:AIAA-2016-4327[R]. Reston:AIAA, 2016. [57] MACK L M. On the stability of the boundary layer on a transonic swept wing:AIAA-1979-0264[R]. Reston:AIAA, 1979. [58] MACK L M. Stability of three-dimensional boundary layers on swept wings at transonic speeds[M]//ZIEREP J, OERTEL H. Symposium Transsonicum III. Berlin, Heidelberg:Springer, 1989:209-223. [59] ARNAL D, CASALIS G, HOUDEVILLE R. Practical transition prediction methods:Subsonic and transonic flows:RTO-EN-AVT-151-07[R]. Belgium:NATO, 2008. [60] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91. [61] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29. [62] OWENS L R, BEELER G, KING R, et al. Supersonic traveling crossflow wave characteristics in ground and flight tests:AIAA-2020-0777[R]. Reston:AIAA, 2020. [63] HAN Z H, HE F, SONG W P, et al. A preconditioned multigrid method for efficient simulation of three-dimensional compressible and incompressible flows[J]. Chinese Journal of Aeronautics, 2007, 20(4):289-296. [64] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016. [65] HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1):31-47. [66] 韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese). [67] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):925-943. |