张力文1,2, 宋文萍1,2, 韩忠华1,2, 钱战森3, 宋笔锋1
收稿日期:
2021-04-12
修回日期:
2021-05-20
发布日期:
2021-08-03
通讯作者:
韩忠华,E-mail:hanzh@nwpu.edu.cn
E-mail:hanzh@nwpu.edu.cn
基金资助:
ZHANG Liwen1,2, SONG Wenping1,2, HAN Zhonghua1,2, QIAN Zhansen3, SONG Bifeng1
Received:
2021-04-12
Revised:
2021-05-20
Published:
2021-08-03
Supported by:
摘要: 超声速民机能够显著提升航空运输效率,已成为未来民机发展的重要方向和必然趋势。然而,超声速飞行引起的声爆一直是制约超声速民机能否成功投入商业运营的核心瓶颈问题之一。以发展新一代环保型低声爆超声速民机为背景,综述了国内外在声爆产生、传播和抑制机理领域的现状和最新研究进展。首先,介绍了描述声爆产生的理论以及相关物理解释,总结了声爆形成的两大主要因素:体积效应和升力效应。其次,综述了大气效应作用下声爆传播机理的研究进展和趋势,论述了影响传播的大气介观湍流效应和微观吸收效应两个重要因素。之后,介绍了传播过程中减少激波汇聚、合理调整升力大小或分布及增加有效长度、利用激波折射与相互干扰等3类声爆抑制机理的研究进展。最后,探讨了在声爆产生、传播和抑制机理研究方面所面临的挑战,并给出了未来研究方向的建议。
中图分类号:
张力文, 宋文萍, 韩忠华, 钱战森, 宋笔锋. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 25649-025649.
ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649.
[1] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598. [2] NIEDZWIECK A, RIBNER H S. Subjective loudness of sonic-boom:N-wave and minimized ('low-boom') signatures:UTIAS-TN-1977-215[R]. Toronto:University of Toronto Institute for Aerospace Studies, 1977. [3] CARLSON H. The shock-wave noise problem of supersonic aircraft in steady flight[R]. Washington, D.C.:NASA, 1959. [4] BOULANGER P, RASPET R, BASS H E. Sonic boom propagation through a realistic turbulent atmosphere[J]. The Journal of the Acoustical Society of America, 1995, 98(6):3412-3417. [5] LIPKENS B, BLACKSTOCK D T. Model experiment to study sonic boom propagation through turbulence. Part I:General results[J]. The Journal of the Acoustical Society of America, 1998, 103(1):148-158. [6] MORGENSTERN J, NORSTRUD N, SOKHEY J, et al. Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period:NASA/CR-2013-217820[R]. Washington, D.C.:NASA,2013. [7] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35(N+3)[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA,2010. [8] NASA. X-59 quiet supersonic technology aircraft[EB/OL]. (2018-03)[2021-07-21]. https://www.nasa.gov/sites/default/files/thumbnails/image/lrc_20180319_lbfdpromo_ne1207_0.jpg. [9] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese). [10] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese). [11] 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性飞行测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4):675-682. QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):675-682(in Chinese). [12] 冷岩, 钱战森, 刘中臣. 超声速飞行器声爆特性数值模拟预测及影响因素分析[C]//首届中国空气动力学大会, 2018. LENG Y, QIAN Z S, LIU Z C. Numerical simulation prediction of sonic explosion characteristics of supersonic aircraft and analysis of influencing factors[C]//The First China Aerodynamics Conference, 2018(in Chinese). [13] 刘中臣, 钱战森, 冷岩. 声爆近场空间压力分布风洞试验精确测量技术研究[C]//首届中国空气动力学大会, 2018. LIU Z C, QIAN Z S, LENG Y. Research on precise measurement technique for wind tunnel test of spatial pressure distribution in near field of acoustic explosion[C]//The First China Aerodynamics Conference, 2018(in Chinese). [14] LENG Y, QIAN Z S. Sonic boom signature prediction and analysis for a type of hypersonic long-range civil vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017. [15] 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4):655-662, 689. LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica, 2019, 37(4):655-662, 689(in Chinese). [16] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458(in Chinese). [17] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7):12-16(in Chinese). [18] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2):359-365(in Chinese). [19] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese). [20] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4):663-674. QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4):663-674(in Chinese). [21] 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1):124916. WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124916(in Chinese). [22] 徐悦, 瞿丽霞, 韩硕, 等. 超声速民机的高可信度声爆预测方法[M]//孙侠生. 绿色航空技术创新与发展. 北京:航空工业出版社, 2021:873-893. XU Y, QU L X, HAN S, et al. High-fidelity sonic boom prediction methods for a supersonic civil transport[M]//SUN X S. Innovation and development of green aviation technology[M]. Beijing:Aviation Industry Press, 2021:873-893(in Chinese). [23] 兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报, 2019, 37(4):646-654, 645. LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):646-654, 645(in Chinese). [24] 冯晓强, 宋笔锋, 李占科. 低声爆静音锥设计方法研究[J]. 航空学报, 2013, 34(5):1009-1017. FENG X Q, SONG B F, LI Z K. Research of low sonic boom quiet spike design method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1009-1017(in Chinese). [25] 李占科, 彭中良, 徐合良. 静音锥对超声速客机声爆水平的影响[J]. 航空工程进展, 2013, 4(3):346-351, 357. LI Z K, PENG Z L, XU H L. Effect of the quiet spike on sonic boom of the supersonic airliner[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3):346-351, 357(in Chinese). [26] 乔建领. 超声速民机声爆预测与低声爆优化设计研究[D]. 西安:西北工业大学, 2019:81-95. QIAO J L. On sonic boom prediction and low-boom design optimization for supersonic transports[D]. Xi'an:Northwestern Polytechnical University, 2019:81-95(in Chinese). [27] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese). [28] ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics, 2019, 32(6):1380-1389. [29] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5):122505. HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122505(in Chinese). [30] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6):21-23, 27. FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6):21-23, 27(in Chinese). [31] WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348. [32] WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3):290-318. [33] WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2):164-194. [34] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2):291-298. [35] PAGE J, PLOTKIN K. An efficient method for incorporating computational fluid dynamics into sonic boom prediction[C]//9th Applied Aerodynamics Conference. Reston:AIAA, 1991. [36] PLOTKIN K. Sonic boom shaping in three dimensions[C]//15th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2009. [37] KANAMORI M, HASHIMOTO A, TAKAHASHI T, et al. Improvement of near-field waveform from supersonic vehicle using multipole analysis[C]//Proceedings of the 49th Fluid Dynamics Conference, 2013. [38] SAITO Y, UKAI T, MIYAKOSHI K, et al. Sonic boom estimation using the multipole method for free-flight experiments[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014. [39] UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [40] KANAMORI M, MAKINO Y, ISHIKAWA H. Extension of multipole analysis to laterally asymmetric flowfield around supersonic flight vehicle[J]. Journal of Aircraft, 2018, 56(1):191-204. [41] ZHA G C, CATTAFESTA L, ALVI F S. Silent and efficient supersonic bi-directional flying wing:HQ-E-DAA-TN63203[R]. Washington, D.C.:NASA, 2013. [42] PLOTKIN K. From sonic boom to sonic puff[C]//19th International Congress on Acoustics Paper, 2007. [43] ZHA G C. Toward zero sonic-boom and high efficiency supersonic UAS:A novel concept of supersonic bi-directional flying wing[C]//US Air Force Academic Outreach UAS Symposium, 2009. [44] HORNING W A. Sonic boom in turbulence:NASA-CR-1879[R]. Washington, D.C.:NASA, 1971. [45] AUGER T, COULOUVRAT F. Numerical simulation of sonic boom focusing[J]. AIAA Journal, 2002, 40(9):1726-1734. [46] BLUMRICH R, COULOUVRAT F, HEIMANN D. Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight[J]. The Journal of the Acoustical Society of America, 2005, 118(2):707-722. [47] LIND A, SPARROW V. Including the effects of terrain reflections and postboom noise in sonic booms[C]//15th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA,2009. [48] KÄSTNER M, HEIMANN D. Sound propagation of sonic booms through real atmospheres emitted from a new supersonic business aircraft[C]//Proceedings of the 29th International Conference on Alpine Meteorology, 2007:781-784. [49] RACHAMI J, PAGE J. Sonic boom modeling of advanced supersonic business jets in NextGen[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. [50] LEE R A, DOWNING J M. Sonic booms produced by US Air Force and US Navy aircraft:Measured data:ADA244804[R]. Brooks AFB:Aerospace Medical Research Labs., 1991. [51] LUNDBERG W R. Seasonal sonic boom propagation prediction:AL/OE-TR-1994-0132[R]. Wright-Patterson AFB:U.S. Armstrong Lab., 1994. [52] YAMASHITA H, OBAYASHI S. Global sonic boom overpressure variation from seasonal temperature, pressure, and density gradients[J]. Journal of Aircraft, 2013, 50(6):1933-1938. [53] HEIMANN D. Effects of long-term atmospheric variability on the width of a sonic-boom carpet produced by high-flying supersonic aircraft[J]. Acoustics Research Letters Online, 2001, 2(2):73-78. [54] BLUMRICH R, COULOUVRAT F, HEIMANN D. Variability of focused sonic booms from accelerating supersonic aircraft in consideration of meteorological effects[J]. The Journal of the Acoustical Society of America, 2005, 118(2):696-706. [55] COULOUVRAT F, BLUMRICH R, HEIMANN D. Meteorologically induced variability of sonic boom of a supersonic aircraft in cruising or acceleration phase[J]. AIP Conference Proceedings, 2006, 838(1):579-586. [56] KANE E, PALMER T Y. Meteorological aspects of the sonic boom:AD 610-643[R]. Washington, D.C.:Federal Aviation Agency, 1964. [57] KANE E J. Some effects of the nonuniform atmosphere on the propagation of sonic booms[J]. The Journal of the Acoustical Society of America, 1966, 39(5B):S26-S30. [58] FRIEDMAN M P, KANE E J, SIGALLA A. Effects of atmosphere and aircraft motion on the location and intensity of a sonic boom[J]. AIAA Journal, 1963, 1(6):1327-1335. [59] MAGLIERI D J, HILTON D A. Experiments on the effects of atmospheric refraction and airplane accelerations on sonic-boom ground-pressure patterns:NASA-TN-D-3520[R]. Washington, D.C.:NASA, 1966. [60] ONYEONWU R O. The effects of wind and temperature gradients on sonic boom corridors:UTIAS-TN-168[R]. Toronto:University of Toronto Institute for Aerospace Studies, 1971. [61] NICHOLLS J M. Meteorological effects on the sonic bang[J]. Weather, 1970, 25(6):265-271. [62] HUBBARD H H, MAGLIERI D, HUCKEL V. Variability of sonic boom signatures with emphasis on the extremities of the ground exposure patterns[R]. Washington, D.C.:NASA, 1971. [63] PIERCE A D. Atmospheric propagation at larger lateral distances from the flight track[C]//High-Speed Research:1994 Sonic Boom Workshop. Washington, D.C.:NASA, 1994:99-122. [64] COULOUVRAT F. Sonic boom in the shadow zone:A geometrical theory of diffraction[J]. The Journal of the Acoustical Society of America, 2002, 111(1):499-508. [65] MAGLIERI D J, PARROTT T L. Atmospheric effects on sonic-boom pressure signatures[J]. Sound:Its Uses and Control, 1963, 2(4):11-14. [66] GEORGE A R, PLOTKIN K J. Sonic boom waveforms and amplitudes in a real atmosphere[J]. AIAA Journal, 1969, 7(10):1978-1981. [67] HAYES W D, RUNYAN JR H L. Sonic-boom propagation through a stratified atmosphere[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):695-701. [68] CLEVELAND R O. Effects of atmospheric stratification on sonic-boom propagation[J]. The Journal of the Acoustical Society of America, 1995, 97(5):3257-3257. [69] HILTON D, HUCKEL V, MAGLIERI D. Sonic-boom measurements during bomber training operations in the Chicago area:NASA-TN-D-3655[R]. Washington, D.C.:NASA, 1966. [70] PAN Y S. Effects of winds and inhomogeneous atmosphere on sonic boom[J]. AIAA Journal, 1968, 6(7):1393-1395. [71] MAGLIERI D J, HILTON D A, MCLEOD N J. Summary of variations of sonic boom signatures resulting from atmospheric effects:NASA-TM-X-59633[R]. Washington, D.C.:NASA, 1967. [72] BALACHANDRAN N K, DONN W L, RIND D H. Concorde sonic booms as an atmospheric probe[J]. Science, 1977, 197(4298):47-49. [73] PIERCE A D. Statistical theory of atmospheric turbulence effects on sonic-boom rise times[J]. The Journal of the Acoustical Society of America, 1971, 49(3B):906-924. [74] PLOTKIN K J, GEORGE A R. Propagation of weak shock waves through turbulence[J]. Journal of Fluid Mechanics, 1972, 54(3):449-467. [75] BASS H E, EZELL J, RASPET R. Effect of vibrational relaxation on rise times of shock waves in the atmosphere[J]. The Journal of the Acoustical Society of America, 1983, 74(5):1514-1517. [76] BASS H E, LAYTON B A, BOLEN L N, et al. Propagation of medium strength shock waves through the atmosphere[J]. The Journal of the Acoustical Society of America, 1987, 82(1):306-310. [77] TUBB P E. Measured effects of turbulence on the rise time of a weak shock:AIAA-1975-0543[R]. Reston:AIAA, 1975. [78] PIERCE A D, SPARROW V W. Relaxation and turbulence effects on sonic boom signatures[C]//First Annual High-Speed Research Workshop. Washington, D.C.:NASA, 1992:1211-1240. [79] BASS H E, RASPET R. Vibrational relaxation effects on the atmospheric attenuation and rise times of explosion waves[J]. The Journal of the Acoustical Society of America, 1978, 64(4):1208-1210. [80] PIELEMEIER W H. The pierce acoustic interferometer as an instrument for the determination of velocity and absorption[J]. Physical Review, 1929, 34(8):1184-1203. [81] KNUDSEN V O. The absorption of sound in gases[J]. The Journal of the Acoustical Society of America, 1935, 6(4):199-204. [82] KNUDSEN V O. The absorption of sound in air, in oxygen, and in nitrogen-Effects of humidity and temperature[J]. The Journal of the Acoustical Society of America, 1933, 5(2):112-121. [83] TUESDAY C S, BOUDART M. Vibrational relaxation times by the impact tube method:Technical Note No. 7[R]. Princeton:Princeton University, 1955. [84] HENDERSON M C, HERZFELD K F. Effect of water vapor on the Napier frequency of oxygen and air[J]. The Journal of the Acoustical Society of America, 1965, 37(6):986-988. [85] HARRIS C M. Absorption of sound in air versus humidity and temperature[J]. The Journal of the Acoustical Society of America, 1966, 40(1):148-159. [86] MONK R G. Thermal relaxation in humid air[J]. The Journal of the Acoustical Society of America, 1969, 46(3B):580-586. [87] PIERCY J E. Ro^le of the vibrational relaxation of nitrogen in the absorption of sound in air[J]. The Journal of the Acoustical Society of America, 1969, 46(3B):602-604. [88] HODGSON J P, JOHANNESEN N H. Real-gas effects in very weak shock waves in the atmosphere and the structure of sonic bangs[J]. Journal of Fluid Mechanics, 1971, 50(1):17-20. [89] HODGSON J P. Vibrational relaxation effects in weak shock waves in air and the structure of sonic bangs[J]. Journal of Fluid Mechanics, 1973, 58(1):187-196. [90] GREENSPAN M. Rotational relaxation in nitrogen, oxygen, and air[J]. The Journal of the Acoustical Society of America, 1959, 31(2):155-160. [91] HATANAKA K, SAITO T. Numerical analysis of weak shock attenuation resulting from molecular vibrational relaxation[J]. Shock Waves, 2011, 21(2):121-129. [92] BAUDOIN M, COULOUVRAT F, THOMAS J L. Absorption of sonic boom by clouds[J]. AIP Conference Proceedings, 2006, 838(1):619-622. [93] BAUDOIN M, COULOUVRAT F, THOMAS J L. Sound, infrasound, and sonic boom absorption by atmospheric clouds[J]. The Journal of the Acoustical Society of America, 2011, 130(3):1142-1153. [94] KNESER H O. The interpretation of the anomalous sound-absorption in air and oxygen in terms of molecular collisions[J]. The Journal of the Acoustical Society of America, 1933, 5(2):122-126. [95] EVANS L B, BASS H E, SUTHERLAND L C. Atmospheric absorption of sound:Theoretical predictions[J]. The Journal of the Acoustical Society of America, 1972, 51(5B):1565-1575. [96] PIERCY J E, EMBLETON T F. Review of noise propagation in the atmosphere[J]. The Journal of the Acoustical Society of America, 1977, 61(6):1403-1418. [97] SUTHERLAND L C. Review of the molecular absorption anomaly[J]. The Journal of the Acoustical Society of America, 1969, 46(1A):86. [98] BASS H E, SUTHERLAND L C, ZUCKERWAR A J. Atmospheric absorption of sound:Update[J]. The Journal of the Acoustical Society of America, 1990, 88(4):2019-2021. [99] BASS H E, SUTHERLAND L C, ZUCKERWAR A J, et al. Atmospheric absorption of sound:Further developments[J]. The Journal of the Acoustical Society of America, 1995, 97(1):680-683. [100] TATARSKI V I. Wave propagation in a turbulent medium[M]. New York:Dover Publications, 2016. [101] BLOKHINTZEV D. The propagation of sound in an inhomogeneous and moving medium II[J]. The Journal of the Acoustical Society of America, 1946, 18(2):329-334. [102] LIGHTHILL M J. On the energy scattered from the interaction of turbulence with sound or shock waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(3):531-551. [103] HUBBARD H H, MAGLIERI D. Noise and sonic boom considerations in the operation of supersonic aircraft[C]//Fourth Congress of International Council of Aeronautical Sciences, 1965:207-225. [104] HUBBARD H H. Ground measurements of sonic-boom pressures for the altitude range of 10,000 to 75,000 feet:NASA-TR-R-198[R]. Washington, D.C.:NASA, 1964. [105] HOUBOLT J C, STEINER R, PRATT K G. Dynamic response of airplanes to atmospheric turbulence including flight data on input and response[R]. Washington, D.C.:NASA, 1964. [106] STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht:Kluwer Academic Publishers,1988. [107] PIERCE A D. Fundamental nonlinear equations of atmospheric acoustics:A synthesis of current physical models[J]. The Journal of the Acoustical Society of America, 1974, 56(S1):S42. [108] RIBNER H S. Acoustic energy flux from shock-turbulence interaction[J]. Journal of Fluid Mechanics, 1969, 35(2):299-310. [109] GARRICK I E, MAGLIERI D. A summary of results on sonic-boom pressure signature variations associated with atmospheric conditions:NASA-TN-D-4588[R]. Washington, D.C.:NASA, 1968. [110] FRIEDMAN M P. A description of a computer program for the study of atmospheric effects on sonic booms[R]. Washington, D.C.:NASA, 1965. [111] SHERLOCK R H, STOUT M B. Storm loading and strength of wood pole lines and a study of wind gusts:An experimental and analytical study of storm loading, and strength during storms, of electric power distribution lines[R]. New York:Edison Electric Institute, 1936. [112] SCHMELTZER R A. Means, variances, and covariances for laser beam propagation through a random medium[J]. Quarterly of Applied Mathematics, 1967, 24(4):339-354. [113] BROWN W. Propagation in random media:Cumulative effect of weak inhomogeneities[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(1):81-89. [114] GRACHEVA M E, GURVICH A S. Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth[J]. Soviet Radiophysics, 1965, 8(4):511-515. [115] AVERIYANOV M, OLLIVIER S, KHOKHLOVA V, et al. Random focusing of nonlinear acoustic N-waves in fully developed turbulence:Laboratory scale experiment[J]. The Journal of the Acoustical Society of America, 2011, 130(6):3595-3607. [116] LIPKENS B, BLANC-BENON P. Numerical model for the weakly nonlinear propagation of sound through turbulence[C]//High-Speed Research:1994 Sonic Boom Workshop. Washington, D.C.:NASA, 1994:60-80. [117] LIPKENS B, BLACKSTOCK D T. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence[J]. The Journal of the Acoustical Society of America, 1998, 104(3):1301-1309. [118] OLLIVIER S, BLANC-BENON P. Model experiments to study acoustic N-wave propagation through turbulent media[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004. [119] PLOTKIN K, MAGLIERI D, SULLIVAN B. Measured effects of turbulence on the loudness and waveforms of conventional and shaped minimized sonic booms[C]//11th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2005. [120] KANAMORI M, TAKAHASHI T, NAKA Y, et al. Numerical evaluation of effect of atmospheric turbulence on sonic boom observed in D-SEND#2 flight test[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [121] UKAI T, OHTANI K, OBAYASHI S. Turbulent jet interaction with a long rise-time pressure signature[J]. Applied Acoustics, 2016, 114:179-190. [122] SALZE É, YULDASHEV P, OLLIVIER S, et al. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence[J]. The Journal of the Acoustical Society of America, 2014, 136(2):556-566. [123] KIM J H, SASOH A, MATSUDA A. Modulations of a weak shock wave through a turbulent slit jet[J]. Shock Waves, 2010, 20(4):339-345. [124] SASOH A, HARASAKI T, KITAMURA T, et al. Statistical behavior of post-shock overpressure past grid turbulence[J]. Shock Waves, 2014, 24(5):489-500. [125] INOKUMA K, WATANABE T, NAGATA K, et al. Finite response time of shock wave modulation by turbulence[J]. Physics of Fluids, 2017, 29(5):051701. [126] INOKUMA K, WATANABE T, NAGATA K, et al. Overpressure fluctuation behind spherical shock wave propagating in grid-generated turbulence[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [127] 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2):123290. LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123290(in Chinese). [128] RIBNER H S, MORRIS P J, CHU W H. Laboratory simulation of development of superbooms by atmospheric turbulence[J]. The Journal of the Acoustical Society of America, 1973, 53(3):926-928. [129] PIERCE A D, MAGLIERI D J. Effects of atmospheric irregularities on sonic-boom propagation[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):702-721. [130] ELMER K, JOSHI M. Variability of measured sonic boom signatures[R]. Washington, D.C.:NASA,1994. [131] CROW S C. Distortion of sonic bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3):529-563. [132] PIERCE A D. Spikes on sonic-boom pressure waveforms[J]. The Journal of the Acoustical Society of America, 1968, 44(4):1052-1061. [133] PALMER T Y. Effects of turbulence on the sonic boom[C]//5th Conference on Applied Meteorology of the American Meteorological Society, 1964. [134] KAMALI G, PIERCE A D. Time dependence of variances of sonic boom waveform[J]. Nature, 1971, 234(5323):30-31. [135] KARAVAINIKOV V N. Amplitude and phase fluctuations in a spherical wave[J]. Akusticheskij Zhurnal, 1957, 3(2):165-176. [136] KELLY M, RASPET R, BASS H E. Scattering of sonic booms by anisotropic turbulence in the atmosphere[J]. The Journal of the Acoustical Society of America, 2000, 107(6):3059-3064. [137] TATARSKII V I. The effects of the turbulent atmosphere on wave propagation[R]. Washington, D.C.:National Oceanic and Atmospheric Administration, U.S. Department of Commerce and the National Science Foundation, 1971. [138] INGARD U, MALING JR G C. On the effect of atmospheric turbulence on sound propagated over ground[J]. The Journal of the Acoustical Society of America, 1963, 35(7):1056-1058. [139] DAIGLE G A. Effects of atmospheric turbulence on the interference of sound waves above a finite impedance boundary[J]. The Journal of the Acoustical Society of America, 1979, 65(1):45-49. [140] DAIGLE G A, PIERCY J E, EMBLETON T F W. Effects of atmospheric turbulence on the interference of sound waves near a hard boundary[J]. The Journal of the Acoustical Society of America, 1978, 64(2):622-630. [141] DAIGLE G A. Correlation of the phase and amplitude fluctuations between direct and ground-reflected sound[J]. The Journal of the Acoustical Society of America, 1980, 68(1):297-302. [142] CLIFFORD S F, LATAITIS R J. Turbulence effects on acoustic wave propagation over a smooth surface[J]. The Journal of the Acoustical Society of America, 1983, 73(5):1545-1550. [143] MCBRIDE W E, BASS H E, RASPET R, et al. Scattering of sound by atmospheric turbulence:A numerical simulation above a complex impedance boundary[J]. The Journal of the Acoustical Society of America, 1991, 90(6):3314-3325. [144] DE WOLF D A. A random-motion model of fluctuations in a nearly transparent medium[J]. Radio Science, 1983, 18(2):138-142. [145] DAIGLE G A, PIERCY J E, EMBLETON T F W. Line-of-sight propagation through atmospheric turbulence near the ground[J]. The Journal of the Acoustical Society of America, 1983, 74(5):1505-1513. [146] MARCHIANO R, COULOUVRAT F, THOMAS J L. Nonlinear focusing of acoustic shock waves at a caustic cusp[J]. The Journal of the Acoustical Society of America, 2005, 117(2):566-577. [147] DAVY B A, BLACKSTOCK D T. Measurements of the refraction and diffraction of a short N wave by a gas-filled soap bubble[J]. The Journal of the Acoustical Society of America, 1971, 49(3B):732-737. [148] PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America, 2002, 111(1):520-529. [149] PLOTKIN K J. State of the art of sonic boom modeling[J]. The Journal of the Acoustical Society of America, 2002, 111(1):530-536. [150] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972. [151] PIERCE A D. Acoustics:An introduction to its physical principles and applications[M]. New York:McGraw-Hill Book Co., 1981. [152] KANG J. Nonlinear acoustic propagation of shock waves through the atmosphere with molecular relaxation[D]. State College:The Pennsylvania State University, 1991. [153] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995. [154] ZABOLOTSKAYA E A, KHOKHLOV R V. Quasi-plane waves in the nonlinear acoustics of confined beams[J]. Soviet Physics Acoustics, 1969, 15(2):35-40. [155] KUZNETSOV V P. Equations of nonlinear acoustics[J]. Soviet Physics Acoustics, 1970, 16(1):467-470. [156] AVERIYANOV M, KHOKHLOVA V A, CLEVELAND R O, et al. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media[J]. The Journal of the Acoustical Society of America, 2011, 129(4):1760-1772. [157] GALLIN L J, RÉNIER M, GAUDARD E, et al. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[J]. The Journal of the Acoustical Society of America, 2014, 135(5):2559-2570. [158] DAGRAU F, RéNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium:A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2011, 130(1):20-32. [159] KANAMORI M, TAKAHASHI T, ISHIKAWA H, et al. Numerical evaluation of sonic boom deformation due to atmospheric turbulence[J]. AIAA Journal, 2021, 59(3):972-986. [160] MCDONALD B E. High-angle formulation for the nonlinear progressive-wave equation model[J]. Wave Motion, 2000, 31(2):165-171. [161] MARCHIANO R, THOMAS J L, COULOUVRAT F. Experimental simulation of supersonic superboom in a water tank:Nonlinear focusing of weak shock waves at a fold caustic[J]. Physical Review Letters, 2003, 91(18):184301. [162] SALAMONE J A, SPARROW V W, PLOTKIN K J. Solution of the lossy nonlinear tricomi equation applied to sonic boom focusing[J]. AIAA Journal, 2013, 51(7):1745-1754. [163] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10):3223-3231. [164] YAMASHITA R, SUZUKI K. Lateral cutoff analysis of sonic boom using full-field simulation[J]. Aerospace Science and Technology, 2019, 88:316-328. [165] YAMASHITA R, WUTSCHITZ L, NIKIFORAKIS N. A full-field simulation methodology for sonic boom modeling on adaptive Cartesian cut-cell meshes[J]. Journal of Computational Physics, 2020, 408:109271. [166] CARLSON H, MACK R, MORRIS O. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions:NASA TN D-3106[R]. Washington, D.C.:NASA, 1965. [167] MORGENSTERN J. Distortion correction of low sonic boom measurements in wind tunnels[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA,2012. [168] HONDA M, YOSHIDA K. D-SEND project for low sonic boom design technology[C]//28th International Congress of the Aeronautical Sciences, 2012. [169] JONES L B. Lower bounds for sonic bangs[J]. The Journal of the Royal Aeronautical Society, 1961, 65(606):433-436. [170] JONES L B. Lower bounds for sonic bangs in the far field[J]. Aeronautical Quarterly, 1967, 18(1):1-21. [171] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1):1-17. [172] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181):651-653. [173] GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8):1542-1545. [174] GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10):2091-2093. [175] SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):686-694. [176] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom:Six decades of research:NASA/SP-2014-622[R]. Washington, D.C.:NASA, 2014. [177] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation:NASA-TP-1348[R]. Washington, D.C.:NASA, 1979. [178] HAYES W D. Sonic boom propagation in a stratified atmosphere, with computer program:NASA-CR-1299[R]. Washington, D.C.:NASA, 1969. [179] CLEVELAND R, BLACKSTOCK D. Waveform freezing of sonic booms revisited[R]. Washington, D.C.:NASA, 1996. [180] PLOTKIN K J. On the aging of sonic booms[J]. The Journal of the Acoustical Society of America, 1993, 93(4):2407. [181] KOEGLER R K. Possible means of reducing sonic booms and effects through shock decay phenomena and some comments on aural response:NASA SP-147[R]. Washington, D.C.:NASA, 1967. [182] FARHAT C, MAUTE K, ARGROW B, et al. Shape optimization methodology for reducing the sonic boom initial pressure rise[J]. AIAA Journal, 2007, 45(5):1007-1018. |
[1] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[2] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[3] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[4] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[5] | 袁吉森, 孙爵, 李玲玉, 于晟浩, 聂晗, 高亮杰, 韩忠华, 钱战森. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316-526316. |
[6] | 聂晗, 宋文萍, 韩忠华, 陈坚强, 段茂昌, 万兵兵. 面向超声速民机层流机翼设计的转捩预测方法[J]. 航空学报, 2022, 43(11): 526342-526342. |
[7] | 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 124916-124916. |
[8] | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学