刘莉1, 曹潇1, 张晓辉2, 贺云涛1
收稿日期:
2019-09-09
修回日期:
2019-12-16
出版日期:
2020-03-15
发布日期:
2019-12-13
通讯作者:
刘莉
E-mail:liuli@bit.edu.cn
LIU Li1, CAO Xiao1, ZHANG Xiaohui2, HE Yuntao1
Received:
2019-09-09
Revised:
2019-12-16
Online:
2020-03-15
Published:
2019-12-13
摘要: 轻小型无人机(UAV)在军民领域都有着广泛的用途,电动无人机由于其振动低、无污染、无排放等优势,已经成为无人机领域的发展热点。为了提高轻小型电动无人机的航时,清洁、高能量密度的太阳能和氢能成为非常可行的技术途径之一。本文总结了轻小型太阳能、氢能无人机的发展历程;梳理了相关的关键技术,并对太阳能、氢能无人机的总体设计方法和能源动力系统的发展进行了较为深入的探讨;最后,展望了该类无人机的发展趋势,并对所面临的挑战进行了预测。
中图分类号:
刘莉, 曹潇, 张晓辉, 贺云涛. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474-623474.
LIU Li, CAO Xiao, ZHANG Xiaohui, HE Yuntao. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623474-623474.
[1] | HAMAKAWA Y. Solar PV energy conversion and the 21st century's civilization[J]. Solar Energy Materials and Solar Cells, 2002, 74(1-4):13-23. |
[2] | ABBASI T, ABBASI S A. ‘Renewable’ hydrogen:Prospects and challenges[J]. Renewable & Sustainable Energy Reviews, 2011, 15(6):3034-3040. |
[3] | NOTH A. History of solar flight[J]. Autonomous Systems Lab, Switzerland:ETH Zürich, 2008:1-7. |
[4] | NONE. Helios solar/fuel cell aircraft crashes[J]. Fuel Cells Bulletin, 2003(8):0-6. |
[5] | EVANS N D. Military gadgets:How advanced technology is transforming today's battlefield-and tomorrow's[M]. London:FT Press, 2004:140-178. |
[6] | CAI G, DIAS J, SENEVIRATNE L. A Survey of small-scale unmanned aerial vehicles:Recent advances and future development trends[J]. Unmanned Systems, 2014, 2(2):175-199. |
[7] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. A solar-powered hand-launchable uav for low-altitude multi-day continuous flight[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway,NJ:IEEE Press, 2015:3986-3993. |
[8] | BRADLEY T, MOFFITT B, MAVRIS D, et al. Applications-transportation|aviation:Fuel cells[J]Encyclopedia of Electrochemical Power Sources, 2009, 98(7):186-192. |
[9] | 曹潇,王正平,贺云涛,等. 低空太阳能无人机研究现状及关键技术研究[J]. 战术导弹技术, 2019, 193(1):64-71. CAO X, WANG Z P, HE Y T,et al. Research status and key technologies of low altitude solar powered UAVs[J]. Tactical Missile Technology,2019,193(1):64-71 (in Chinese). |
[10] | IRVING F,MORGAN D. The feasibility of an aircraft propelled by solar energy[C]//2nd International Symposium on the Technology and Science of Low Speed and Motorless Flight, 1974:1-10. |
[11] | BOUCHER R J. Project sunrise[C]//AIAA/SAE/ASME 15th Jiont Propulsion Conference.Reston,VA:AIAA, 1979:1-6. |
[12] | BOUCHER R. Starduster-A solar powered high altitude airplane[C]//21st Joint Propulsion Conference, 1985:1-9. |
[13] | BOUCHER R J. History of solar flight[C]//20th Joint Propulsion Conference, 1979:1-14. |
[14] | SCHAEPER W. Solar flight of wolfgang schaeper[EB/OL]. (1999-05-30)[2019-09-06]. http://www.mf-gmarkdorf.de/record/index.htm. |
[15] | COCCONI A. AC propulsion's solar electric powered solong UAV[R]. Borrego:AC Propulsion, 2005. |
[16] | COCCONI A. AC propulsion solong UAV flies for 48 hours on sunlight two nights aloft opens new era of sustainable flight[R]. Borrego:AC Propulsion, 2005. |
[17] | ZHU X, ZHENG G, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53. |
[18] | NOTH A. Designing solar airplanes for continuous flight[EB/OL]. (2009-12-20)[2019-09-06]. https://spie.org/news/1649-designing-solar-airplanes-for-continuous-flight?SSO=1. |
[19] | NOTH A, ENGEL M W, SIEGWART R. Flying solo and solar to Mars[J]. Robotics & Automation Magazine IEEE, 2006, 13(3):44-52. |
[20] | NOTH A. Design of solar powered airplanes for continuous flight[D]. Zurich:Eidgenssische Technische Hochschule Zürich, 2008. |
[21] | AeroVironment. AeroVironment solar-powered puma AE small unmanned aircraft achieves continuous flight for more than nine hours[EB/OL]. (2013-08-12)[2019-09-06]. http://www.avinc.com/resources/pr-ess_release/aerovironment-solar-powered-puma-ae-small-unmanned-aircraft-achieves-contin. |
[22] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377. |
[23] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference.Piscataway,NJ:IEEE Press, 2016, 1-8. |
[24] | 李晓阳,赵庸. 太阳能无人驾驶勘测飞机:CN2181477[P]. 1994-11-02. LI X Y,ZHAO Y. Solar unmanned reconnaissance aircraft:CN2181477[P]. 1994-11-02 (in Chinese). |
[25] | 李晓阳. 蓝天任我游-中国"绿色先锋"太阳能无人机技术验证机[J]. 国际航空, 2002(12):38-39. LI X Y. China's green-pionner solar powered UAV[J]. International Aviation, 2002(12):38-39 (in Chinese). |
[26] | 昂海松. 太阳能无人机[J]. 电子产品世界, 2015(8):24-26. ANG H S. Solar powered UAV[J]. Qutlook of Elec tronic Technology, 2015(8):24-26 (in Chinese). |
[27] | 周洲. 太阳能无人机[EB/OL]. (2017-07-26)[2019-09-06]. https://news.nwpu.edu.cn/info/1002/5043-8.htm. ZHOU Z. Solar powered UAV[EB/OL]. (2017-07-26)[2019-09-06]. https://news.nwpu.edu.cn/info/1002/50438.htm (in Chinese). |
[28] | 周洲. 太阳能无人机[EB/OL]. (2019-07-28)[2019-09-06].https://news.nwpu.edu.cn/info/1002/64544. html. ZHOU Z. Solar powered UAV[EB/OL]. (2019-07-28)[2019-09-06].https://news.nwpu.edu.cn/info/1002/64544. html(in Chinese). |
[29] | 刘刚. 考虑局部阴影的太阳能无人机能源管理系统研究[D]. 北京:北京理工大学, 2019. LIU G. Energy management system of solar-powered UAVs under partial shading[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[30] | 曹潇. 鸭式翼身融合太阳能无人机总体优化设计[D]. 北京:北京理工大学, 2019. CAO X. Conceptual optimization design for canard wing body fusion solar powered UAV[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[31] | DORNHEIM M. Fuel cells debut[J]. Aviation Week & Space Technology, 2003, 158(22):52. |
[32] | NASA. NASA Armstrong fact sheet:Helios prototy-pe[EB/OL]. (2014-02-28)[2019-09-06]. http://ww-w.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC. html. |
[33] | GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333. |
[34] | OFOMA U, WU C. Design of a fuel cell powered UAV for environmental research[C]//AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit.Reston,VA:AIAA, 2004:1-11. |
[35] | HERWERTH C, OFOMA U, WU C, et al. Develop-ment of a fuel cell powered UAV for environmental research[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2006:1-14. |
[36] | CHIANG C, HERWERTH C, MITMIRANI M, et al. Systems integration of a hybrid PEM fuel cell/battery powered endurance UAV[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2008:1-10. |
[37] | MOFFITT B, BRADLEY T, PAREKH D, et al. Design and performance validation of a fuel cell unmanned aerial vehicle[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2006:1-20. |
[38] | BRADLEY T, MOFFITT B, PAREKH D, et al. Flight test results for a fuel cell unmanned aerial vehicle[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2007:1-8. |
[39] | BRADLEY T, MOFFITT B, MAVRIS D, et al. Development and experimental characterization of a fuel cell powered aircraft[J]. Journal of Power Sources, 2007, 171(2):793-801. |
[40] | ROESSLER C, SCHOEMANN J, BAIER H. Aerospace application of hydrogen and fuel cells[C]//18th World Hydrogen Conference 2010, Energy & Environment, 2010:400. |
[41] | NONE.AMI, student team set new record fuel-cell aircraft flight[J]. Fuel Cells Bulletin, 2009(1):4. |
[42] | PARSCH A. Naval research lab spider-lion[EB/OL]. (2006-02-07)[2019-09-06]. http://www.designations-ystems.net/dusrm/app4/spider-lion.html. |
[43] | MCCONNELL V P. Military UAVs claiming the skies with fuel cell power[J]. Fuel Cells Bulletin, 2007, 2007(12):12-15. |
[44] | NONE. Protonex-powered NRL UAV achieves flight endurance milestone[J]. Fuel Cells Bulletin, 2009(10):6. |
[45] | BALDIC J, OSENAR P, LAUDER N, et al. Fuel cell systems for long duration electric UAVs and UGVs[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2010, 7707:17. |
[46] | SWIDER-LYONGS K, STROMAN R, PAGE G, et al. Hydrogen fule cell propulsion for long endurance small UAVs[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston,VA:AIAA, 1-8. |
[47] | SWIDER-LYONGS K, STROMAN R, PAGE G, et al. The ion tiger fuel cell unmanned air vehicle[C]//Proceedings of the 44th Power Sources Conference, 2010:1-3. |
[48] | NONE. Record flight for UAV using protonex fuel cell system[J]. Fuel Cells Bulletin, 2009(12):4. |
[49] | NONE. NRL completes first flight of ion tiger with custom fuel cell[J]. Fuel Cells Bulletin, 2017(1):5. |
[50] | NONE. Longest flight for small UAV using protonex fuel cell[J]. Fuel Cells Bulletin, 2008(1):5. |
[51] | NONE. Insitu flies hydrogen fuel cell powered scan-eagle UAV[J]. Fuel Cells Bulletin, 2012(5):5. |
[52] | Birdeye-650[EB/OL]. (2009-05-30)[2019-09-06].https://defense-update.com/20100823_birdeye-650le.html. |
[53] | FORD T. Paris air show[J]. Aircraft Engineering and Aerospace Technology, 2003, 59(4):28-30. |
[54] | NONE. BlueBird, horizon unveil first commercial fuel cell UAV[J]. Fuel Cells Bulletin, 2009(10):6. |
[55] | LEE B, PARK P, KIM C, et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science and Technology, 2012, 26(8):2291-2299. |
[56] | NONE. Protonex first fuel cell order to power flyh2 commercial UAVs[J]. Fuel Cells Bulletin, 2017(7):4. |
[57] | NONE. Lockheed martin ruggedized UAS uses AMI fuel cell power[J]. Fuel Cells Bulletin, 2011(9):4. |
[58] | BREMEN N, FRONTIER O T. Energy or fuel cell powered UAV reaches 10h flight endurance[J]. Fuel Cells Bulletin, 2011(9):4-5. |
[59] | LAPEÑA-REY N, BLANCO J A, FERREYRA E, et al. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions[J]. International Journal of Hydrogen Energy, 2017, 42(10):6926-6940. |
[60] | NONE. Horizon, bluebird collaborate on fuel cell powered civilian UAV[J]. Fuel Cells Bulletin, 2014(3):3. |
[61] | NONE. H3 unveils dronebox system, HES fuel cell flies UAV for 6h[J]. Fuel Cells Bulletin, 2016(3):15. |
[62] | NONE. Fuel cell/battery hybrid UAV takes off in taiwan[J]. Fuel Cells Bulletin, 2010(6):4-5. |
[63] | 许震宇, 卢强. 燃料电池轻型飞机起飞质量估算方法[J]. 飞机设计, 2011, 31(3):6-8. XU Z Y, LU Q. Estimation method of the take-off weight of fuel cell powered light aircrafts[J]. Aircraft Design,2011,31(3):6-8 (in Chinese). |
[64] | 许震宇, 李斌. 某型燃料电池无人机结构设计[J]. 玻璃钢/复合材料, 2010(6):55-58. XU Z Y, LI B. Structure design of fuel cell powered UAV[J]. Fiber Reinforced Plastics/Composite, 2010(6):55-58(in Chinese). |
[65] | 许震宇. 同济主持研制首架纯燃料电池无人机试飞成功[EB/OL]. (2012-12-19)[2019-09-06]. https://www.tongji.edu.cn/info/1031/3692.htm. XU Z Y. The development of the first fuel cell powered UAV test success by Tongji. (2012-12-19)[2019-09-06]. https://www.tongji.edu.cn/info/1031/3692.htm (in Chinese). |
[66] | 优雷特航空技术. Vtol350[EB/OL]. (2017-06-21)[2019-09-06]. http://www.uniqueuav.com/cpphotoli-st.asp?classid=243. Ulet Aviation Technology. Vtol350[EB/OL]. (2017-06-21)[2019-09-06]. http://www.uniqueuav.com/cpphotoli-st.asp?classid=243 (in Chinese). |
[67] | 刘倩. 燃料电池无人机电堆控制系统研究[D]. 北京:北京理工大学, 2019. LIU Q. Research on fuel cell stack control system of fuel cell powered UAVs[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[68] | 戴月领. 基于模型预测的燃料电池无人机能源管理策略研究[D]. 北京:北京理工大学, 2019. DAI Y L. Research on energy management strategy of fuel cell UAV based on model prediction[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[69] | NONE. EnergyOr shows off world's first fuel cell mu-ltirotor UAV[J]. Fuel Cells Bulletin, 2015(4):5-6. |
[70] | 张晓辉. 燃料电池混合动力无人机能源管理研究[D]. 北京:北京理工大学, 2018. ZNANG X H. Energy management of fuel cell hy brid electric UAVs[D]. Beijing:Beijing Institute of Technology, 2018 (in Chinese). |
[71] | NONE. Chinese UAV maker MMC flies hydrogen fuel cell drone for 4h[J]. Fuel Cells Bulletin, 2016(6):4-5. |
[72] | CHEN H, KHALIGH A. Hybrid energy storage system for unmanned aerial vehicle (UAV)[C]//IECON 2010-36th Annual Conference on IEEE In-dustrial Electronics Society.Piscataway,NJ:IEEE Press, 2010:2851-2856. |
[73] | GADALLA M, ZAFAR S. Analysis of a hydrogen fuel cell-PV power system for small UAV[J]. International Journal of Hydrogen Energy, 2016, 41(15):6422-6432. |
[74] | LEE B, KWON S, PARK P, et al. Active power man agement system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3167-3177. |
[75] | LEE B, PARK P, KIM K, et al. Erratum to "The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries"[J]. Journal of Mechanical Science and Technology, 2014, 28(3):1137. |
[76] | GANG B G, KIM H, KWON S. Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles[J]. Energy, 2017, 141:1547-1554. |
[77] | GANG B G, KWON S. Design of an energy man agement technique for high endurance unmanned aerial vehicles powered by fuel and solar cell systems[J]. International Journal of Hydrogen Energy, 2018, 43(20):9787-9796. |
[78] | ZHANG X H, LIU L, XU G T. Energy management strategy of hybrid PEMFC-PV-battery propulsion system for low altitude UAVs[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,VA:AIAA,2016:1-15. |
[79] | LI Y P, LIU L, ZHANG X H, et al. Ground tests of hybrid electric power system for UAVs[C]//Applied Mechanics and Materials. Trans Tech Publications. 2014, 448:2326-2334. |
[80] | ZHANG X H, LIU L, DAI Y L, et al. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J]. International Journal of Hydrogen Energy, 2018, 43(21):10094-10103. |
[81] | 李延平, 刘莉. 太阳能/氢能混合动力无人机及关键技术[J]. 飞航导弹, 2014(7):39-45. LI Y P, LIU L. Solar/hydrogen hybrid UAV and key technologies[J]. Aerodynamics Missile Journal, 2014(7):39-45 (in Chinese). |
[82] | 杜孟尧. 太阳能/氢能混合动力小型无人机设计及关键技术研究[D]. 北京:北京理工大学, 2015. DU M Y. Design of solar/hydrogen hybrid powered small-scale UAV and research on key techniques[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese). |
[83] | 李延平. 太阳能/氢能混合动力小型无人机总体设计[D]. 北京:北京理工大学, 2014. LI Y P. Conceptual design for solar/hydrogen hy brid powered small-scale UAV[D]. Beijing:Beijing Institute of Technology, 2014(in Chinese). |
[84] | 蔚光辉. 绿色能源小型电动无人机总体设计[D]. 北京:北京理工大学, 2018. YU G H. Conceptual design for green energy electric powered small-scale UAV[D]. Beijing:Beijing Institute of Technology, 2018(in Chinese). |
[85] | PHILLIPS W H. Some design considerations for solar-powered aircraft:NASA-TP-1675[R]. Washington,D.C.:NASA, 1980. |
[86] | MACCREADY P B, LISSAMAN P, MORGAN W, et al. Sun-powered aircraft designs[J]. Journal of Aircraft, 1983, 20(6):487-493. |
[87] | BOUCHER R J. Sunrise, the world's first solar-powered airplane[J]. Journal of Aircraft, 1985, 22(10):840-846. |
[88] | YOUNGBLOOD J W, TALAY T A. Solar-powered airplane design for long-endurance, high-altitude flight[C]//2nd International Very Large Vehicles Conference, 1982, 1-10. |
[89] | YOUNGBLOOD J, TALAY T, PEGG R. Design of long endance unmanned airplanes incorporating solar and fuel cell propulsion[C]//20th Joint Propulsion Conference, 1984:1-11. |
[90] | COLOZZA A. Preliminary design of a long-endurance Mars aircraft[C]//26th Joint Propulsion Conference, 1990:1-11. |
[91] | BRANDT S A, GILLIAM F T. Design analysis meth odology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4):703-709. |
[92] | MORTON S, PAPANIKOLOPOULOS N. Two meter solar UAV:Design approach and performance prediction for autonomous sensing applications[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press, 2016:1695-1701. |
[93] | RAJENDRAN P, SMITH H. Development of design methodology for a small solar-powered unmanned aerial vehicle[J]. International Journal of Aerospace Engineering, 2018:1-10. |
[94] | SHIAU J K, MA D M, CHIU C W, et al. Optimalsizing and cruise speed determination for a solar- powered airplane[J], Journal of Aircraft, 2010, 47(2):622-629. |
[95] | LEUTENEGGER S, JABAS M, SIEGWART R Y. Solar air plane conceptual design and performance estimation[J]. Journal of Intelligent & Robotic Systems, 2011, 61(1-4):545-561. |
[96] | MORTON S, SCHARBER L, PAPANIKOLOPOUL O N. Solar powered unmanned aerial vehicle for continuous flight:Conceptual overview and optimization[C]//IEEE International Conference on Robotics & Automation.Piscataway,NJ:IEEE Press, 2013:766-771. |
[97] | MORTON S, D'SA R, PAPANIKOLOPOULOS N. Solar powered UAV:Design and experiments[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press, 2015:2460-2466. |
[98] | KOHOUT L, SCHMITZ P. Fuel cell propulsion systems for an all-electric personal air vehicle[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years.Reston,VA:AIAA, 2003:1-9. |
[99] | BERTON J J, FREEH J E, WICKENHEISER T J. An analytical performance assessment of a fuel cell-powered, small electric airplane:NASA/TM-2003-212393[R]. Washington,D.C.:NASA, 2003. |
[100] | WENTZ W, MYOSE R, MOHAMED A. Hydrgen-fueled general aviation airplanes[C]//AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston,VA:AIAA,2005:1-14. |
[101] | MOFFITT B A. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles[D]. Atlanta:Georgia Institute of Technology, 2010. |
[102] | CHOI T, SOBAN D, MAVRIS D. Creation of a design framework for all-electric aircraft propulsion architectures[C]//International Energy Conversion Engineering Conference, 2005:1-11. |
[103] | CHIANG C, HERWERTH C, MIRMIRANI M, et al. Systems integration of a hybrid PEM fuel cell/battery powered endurance UAV[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA,2008:1-10. |
[104] | SOBAN D, UPTON E. Design of a UAV to optimize use of fuel cell propulsion technology[C]//Infotech@Aerospace, 2005:1-15. |
[105] | BRADLEY T, MOFFITT B, FULLER T, et al. Design studies for hydrogen fuel cell powered un manned aerial vehicles[C]//26th AIAA Applied Aerodynamics Conference. Reston,VA:AIAA,2008:1-16. |
[106] | BRADLEY T H. Modeling, design and energy management of fuel cell systems for aircraft[D]. Atlanta:Georgia Institute of Technology, 2008. |
[107] | BRADLEY T H, MOFFITT B A, FULLER T F, et al. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles[J]. Journal of Aircraft, 2009, 46(6):1945-1956. |
[108] | OH T H. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission[J]. Energy Conversion and Management, 2018, 176:349-356. |
[109] | LEE B, PARK P, KIM K, et al. The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries[J]. Journal of Mechanical Science and Technology, 2014, 28(1):399-405. |
[110] | 刘莉, 杜孟尧, 张晓辉,等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al.Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1):144-162 (in Chinese). |
[111] | 曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-866. QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015(4):864-866 (in Chinese). |
[112] | NREL. The best-research cell efficiencies chart[EB/OL]. (2019-11-06)[2019-12-10].https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficien-cies. |
[113] | CHRISTEN T, CARLEN M W. Theory of Ragone plots[J]. Journal of Power Sources, 2000, 91(2):210-216. |
[114] | 邢雅兰, 王胜彬, 张世超, 等. 锂离子电池新型三维纳米结构负极研究进展[J]. 航空学报, 2014, 35(10):2776-2783. XING Y L, WANG S B, ZHANG S C, et al. Research on new three-dimensional nanostructured anode materials for Lithiumion batteries[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2776-2783(in Chinese). |
[115] | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1):19-29. |
[116] | MORRISEY B J. Multidisciplinary design optimization of an extreme aspect ratio HALE UAV[D]. San Luis Obispo:California Polytechnic State University, 2009. |
[117] | SHIAU J K, MA D M, YANG P Y, et al. Design of a solar power management system for an experimental UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4):1350-1360. |
[118] | ZHU X Z, GUO Z, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53. |
[119] | GAO X Z, HOU Z, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44:96-108. |
[120] | GAO X Z, HOU Z X, GUO Z, et al. Energy man agement strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70:20-30. |
[121] | ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60:770-783. |
[122] | BRADLEY T, MOFFITT B, PAREKH D, et al. Energy management for fuel cell powered hybrid-electric aircraft[C]//7th International Energy Conversion Engineering Conference, 2009:1-22. |
[123] | KARUNARATHNE L, ECONOMOU J T, KNOW-LES K. Fuzzy logic control strategy for fuel cell/battery aerospace propulsion system[C]//2008 IEEE Vehicle Power and Propulsion Conference.Piscataway,NJ:IEEE Press, 2008:1-5. |
[124] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Intelligent power management (IPM) for transient recognition and control of PEM fuel cell/battery hybrid system[C]//IEEE Vehicle Power and Propulsion Conference.Piscataway,NJ:IEEE Press, 2009:992-997. |
[125] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Model based power and energy management system for PEM fuel cell/Li-Ion battery driven propulsion system[C]//5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), 2010:1-6. |
[126] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Power and energy management system for fuel cell unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2012, 226(4):437-454. |
[127] | VERSTRAETE D,GONG A,LU D,et al. Experi-mental investigation of the role of the battery in the AeroStack hybrid, fuel-cell-based propulsion system for small unmanned aircraft systems[J]International Journal of Hydrogen Energy, 2015, 40(3):1598-1606. |
[128] | VERSTRAETE D, LEHMKUEHLER K, GONG A, et al. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft[J]. Journal of Power Sources, 2014, 250:204-211. |
[129] | GONG A, PALMER J L, BRIAN G, et al. Performance of a hybrid, fuel-cell-based power system during simulated small unmanned aircraft missions[J]. International Journal of Hydrogen Energy, 2016, 41(26):11418-11426. |
[130] | GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333. |
[131] | LEI T, YANG Z, LIN Z, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6):1488-1503. |
[132] | CHEN H, KHALIGH A. Hybrid energy storage system for unmanned aerial vehicle (UAV)[C]//IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.Piscataway,NJ:IEEE Press, 2010:2851-2856. |
[133] | LI Y P, LIU L, MA X, et al. Design of hybrid electric propulsion system for long endurance small UAV[C]//10th International Energy Conversion Engineering Conference, 2012:1-18. |
[134] | KLESH A, KABAMBA P. Energy-optimal path planning for solar-powered aircraft in level flight[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Restoon,VA:AIAA,2007:1-17. |
[135] | KLESH A, KABAMBA P. Solar-powered aircraft:Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1320-1329. |
[136] | HOSSEINI S, RAN D, MESBAHI M. Optimal path planning and power allocation for a long endurance solar-powered UAV[C]//American Control Conference (ACC), 2013:2588-2593. |
[137] | HOSSEINI S, MESBAHI M. Energy-aware aerial surveillance for a long-endurance solar-powered unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9):1980-1993. |
[138] | GAO X Z, HOU Z X, GUO Z, et al. The equiva lence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76:986-995. |
[139] | HUANG Y, WANG H, YAO P. Energy-optimal path planning for Solar-powered UAV with tracking moving ground target[J]. Aerospace Science and Technology, 2016, 53:241-251. |
[140] | HUANG Y, CHEN J, WANG H, et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92:831-838. |
[141] | 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014,35 (2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2):408-416 (in Chinese). |
[142] | 王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5):936-943. WANG S Q, MA D L, YANG M Q,et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astron-autics,2019,45(5):936-943(in Chinese). |
[143] | BRADLEY T, MOFFITT B, PAREKH D, et al. Energy management for fuel cell powered hybrid-electric aircraft[C]//7th International Energy Conversion Engineering Conference, 2009:1-22. |
[144] | KARUNARATHNE L, ECONOMOU J T, KNOW LES K. Dynamic control of fuel cell air supply system with power management[C]//2011 19th Mediterranean Conference on Control & Automation (MED). Piscataway,NJ:IEEE Press, 2011:856-861. |
[145] | KARUNARATHNE L, ECONOMOU J T, KNOW LES K. Adaptive neuro fuzzy inference system-based intelligent power management strategies for fuel cell/battery driven unmanned electric aerial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2009, 224(1):77-88. |
[146] | KARUNARATHNE L. An intelligent power man agement system for unmanned aerial vehicle propulsion applications[D]. Bedfordshire:Cranfield University, 2012. |
[147] | MOTAPON S N, DESSAINT L A, AL-HADDAD K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2013, 61(3):1320-1334. |
[148] | MOTAPON S N. Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft:Evaluation of energy management schemes[D]. Québec:Université Du Québec, 2013. |
[149] | ZHANG X H, LIU L, DAI Y L. Fuzzy state machine energy management strategy for hybrid electric UAVs with PV/fuel cell/battery power system[J]. International Journal of Aerospace Engineering, 2018:1-16. |
[1] | 王海峰, 刘坤澎, 江泓鑫, 杜晨曦. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024, 45(9): 528831-528831. |
[2] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[3] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[4] | 邵嘉琪, 张晓辉, 席涵宇, 刘子荣. 太阳能无人机线性自抗扰多环路能源控制[J]. 航空学报, 2023, 44(10): 327812-327812. |
[5] | 朱炳杰, 杨希祥, 宗建安, 邓小龙. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 25556-025556. |
[6] | 宗建安, 朱炳杰, 侯中喜, 杨希祥. 固旋翼垂直起降混电飞行器推进系统设计[J]. 航空学报, 2022, 43(5): 225395-225395. |
[7] | 杜楠楠, 陈建, 马奔, 王术波, 张自超. 多太阳能无人机覆盖路径优化方法[J]. 航空学报, 2021, 42(6): 324476-324476. |
[8] | 雷涛, 孔德林, 王润龙, 李伟林, 张晓斌. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报, 2021, 42(6): 624047-624047. |
[9] | 范周伟, 余雄庆, 王朝, 钟伯文. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021, 42(4): 524353-524353. |
[10] | 张茂权, 陈海昕. 小型电动无人机航程航时估算模型[J]. 航空学报, 2021, 42(3): 625085-625085. |
[11] | 段登燕, 裴家涛, 祖瑞, 李建波. 电机-变距螺旋桨动力系统功率优化控制[J]. 航空学报, 2021, 42(3): 623933-623933. |
[12] | 朱立宏, 孙国瑞, 呼文韬, 李钏, 付增英, 于智航, 刘正新. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3): 623503-623503. |
[13] | 马东立, 张良, 杨穆清, 夏兴禄, 王少奇. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418-623418. |
[14] | 刘刚, 王正平, 刘莉, 张晓辉, 曹潇. 考虑局部遮挡的太阳能无人机能源控制[J]. 航空学报, 2020, 41(3): 623178-623178. |
[15] | 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020, 41(3): 623414-623414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学