1 |
钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600.
|
|
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese).
|
2 |
朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.
|
|
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese).
|
3 |
黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505.
|
|
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese).
|
4 |
兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报, 2019, 37(4): 646-654, 645.
|
|
LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4): 646-654, 645 (in Chinese).
|
5 |
张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J/OL]. 航空学报, (2021-08-04)[2021-09-29]. .
|
|
ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation and mitigation mechanism[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-08-04) [2021-09-29]. (in Chinese).
|
6 |
韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
|
|
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese).
|
7 |
钱战森, 冷岩, 高亮杰, 等. 超声速飞行器声爆预测技术研究现状与发展建议[J]. 气动研究与实验, 2020, 32(1): 89-100.
|
|
QIAN Z S, LENG Y, GAO L J, et al. Current status and development proposals of sonic boom prediction technique for supersonic aircraft[J]. Aerodynamic Research & Experiment, 2020, 32(1): 89-100 (in Chinese).
|
8 |
刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 123596.
|
|
LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123596 (in Chinese).
|
9 |
盛裴轩. 大气物理学[M]. 北京: 北京大学出版社, 2003.
|
|
SHENG P X. Atmospheric physics[M]. Beijing: Peking University Press, 2003 (in Chinese).
|
10 |
车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报, 2021, 64(3): 735-751.
|
|
CHE J H, ZHAO P, SHI Q, et al. Research progress in atmospheric boundary layer[J]. Chinese Journal of Geophysics, 2021, 64(3): 735-751 (in Chinese).
|
11 |
HILTON D A, HUCKEL V, MAGLIERI D J. Sonic-boom measurements during bomber training operations in the Chicago area: NASA TN-3655 [R]. Washington, D.C.: NASA, 1966.
|
12 |
BIRINGEN S, HOWARD J E, REICHERT R S. Simulation of sonic boom interaction with shear turbulence[J]. Mechanics Research Communications, 2005, 32(5): 604-609.
|
13 |
PIERCE A D. Spikes on sonic-boom pressure waveforms[J]. The Journal of the Acoustical Society of America, 1968, 44(4): 1052-1061.
|
14 |
CROW S C. Distortion of sonic Bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3): 529-563.
|
15 |
WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 301-348.
|
16 |
WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3): 290-318.
|
17 |
CARLSON H W, MAGLIERI D J. Review of sonic boom generation theory and prediction methods[J]. The Journal of the Acoustical Society of America, 1971, 49(1A): 72.
|
18 |
RANDALL D G. Sonic Bang intensities in a stratified, still atmosphere[J]. Journal of Sound and Vibration, 1968, 8(2): 196-214.
|
19 |
THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA TN-D-6832 [R]. Washington, D.C.: NASA, 1972.
|
20 |
ROBINSON L D. Sonic boom propagation through an inhomogeneous windy atmosphere[D]. Austin: The University of Texas at Austin, 1991.
|
21 |
CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
|
22 |
CROW S C. Distortion of sonic Bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3): 529-563.
|
23 |
王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1): 121458.
|
|
WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121458 (in Chinese).
|
24 |
冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4): 655-662, 689.
|
|
LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica, 2019, 37(4): 655-662, 689 (in Chinese).
|
25 |
张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039.
|
|
ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039 (in Chinese).
|
26 |
乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674.
|
|
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese).
|
27 |
王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散 [J]. 航空学报, 2022, 43(1): 124916.
|
|
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of the sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124916 (in Chinese).
|
28 |
ZABOLOTSKAYA E A, KHOKHLOV R V. Quasi-plane waves in the nonlinear acoustics of confined beams[J]. Soviet Physics Acoustics, 1969, 15(2): 35-40.
|
29 |
KUZNETSOV V P. Equations of nonlinear acoustics[J]. Soviet Physics Acoustics, 1970, 16(1): 467-470.
|
30 |
PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 520-529.
|
31 |
LOCEY L L. Sonic boom postprocessing functions to simulate atmospheric turbulence effects[D]. State College: The Pennsylvania State University, 2008.
|
32 |
LUQUET D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom[D]. Pairs: Sorbone Unicversity (UPMC), 2016.
|
33 |
DAGRAU F, RÉNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2011, 130(1): 20-32.
|
34 |
ROBINSON L. Sonic boom propagation through turbulence: A ray theory approach: N94-28192 [R]. Washington, D.C.: NASA, 1993.
|
35 |
YAMASHITA H, OBAYASHI S. Sonic boom variability due to homogeneous atmospheric turbulence[J]. Journal of Aircraft, 2009, 46(6): 1886-1893.
|
36 |
冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2): 123290.
|
|
LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123290 (in Chinese).
|
37 |
LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
38 |
LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79: 647-657.
|
39 |
LENG Y, QIAN Z S. A CFD based sonic boom prediction method and investigation on the parameters affecting the sonic boom signature[J]. Procedia Engineering, 2015, 99: 433-451.
|
40 |
LIOU M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics, 2000, 160(2): 623-648.
|
41 |
HINZE J O. Turbulence[M]. 2nd ed. New York: McGraw-Hill, 1975: 175-320.
|
42 |
YAMAMOTO M, HASHIMOTO A, AOYAMA T, et al. A unified approach to an augmented Burgers equation for the propagation of sonic booms[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 1857-1866.
|
43 |
韩阳, 冷岩, 杨龙, 等. 一类超声速长航程民用客机的气动设计和性能评估[J]. 航空科学技术, 2019, 30(9): 25-32.
|
|
HAN Y, LENG Y, YANG L, et al. Aerodynamic design and evaluation of a type of supersonic long-range civil transport[J]. Aeronautical Science & Technology, 2019, 30(9): 25-32 (in Chinese).
|