[1] Douglas Aircraft Company. Study of high-speed civil transports, NASA CR-1989-4235[R]. Washington, D.C.:NASA, 1989. [2] SCHMITT V, REDEKER G. Research programs for transport aircraft in Europe[C]//2000 World Aviation Conference. Reston:AIAA, 2000. [3] PLOTKIN K, MAGLIERI D. Sonic boom research:History and future[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003. [4] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35(N+3)[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010. [5] SAKATA K. Supersonic experimental airplane(NEXST) for next generation SST technology:AIAA-2002-0527[R]. Reston:AIAA, 2002. [6] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese). [7] COLLIER JR F S. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993. [8] JOSLIN R D. Overview of laminar flow control:NASA/TP-1988-208705[R]. Washington, D.C.:NASA, 1998. [9] WAGNER R, MADDALON D V, BARTLETT D W, et al. Fifty years of laminar flow flight testing[C]//Aerospace Technology Conference and Exposition, 1988. [10] HORSTMANN K, MILEY S. Comparison of flight an wind tunnel investigations of tolmien-schlichting-waves on an aircraft wing[C]//DGLR/AAAF/RAeS Proceedings First European Forum on Laminar Flow Technology, 1992:45-51. [11] HORSTMANN K H, QUAST A, REDEKER G. Flight and wind-tunnel investigations on boundary-layer transition[J]. Journal of Aircraft, 1990, 27(2):146-150. [12] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91. [13] STURDZA P. An aerodynamic design method for supersonic natural laminar flow aircraft[D]. Stanford:Stanford University, 2003. [14] 比施根斯. 超声速飞机空气动力学和飞行力学[M]. 郭桢, 译. 上海:上海交通大学出版社, 2009. BUSHGENS G S. Aerodynamics and flight dynamics for supersonic aircraft[M]. GUO Z, translated. Shanghai:Shanghai Jiao Tong University Press, 2009(in Russian). [15] KVCHEMANN D. The aerodynamic design of aircraft[M]. Reston:AIAA, 2012. [16] GASTER M. On the flow along swept leading edges[J]. Aeronautical Quarterly, 1967, 18(2):165-184. [17] CUMPSTY N A, HEAD M R. The calculation of the three-dimensional turbulent boundary layer:part III. Comparison of attachment-line calculations with experiment[J]. Aeronautical Quarterly, 1969, 20(2):99-113. [18] POLL D I A. Some observations of the transition process on the windward face of a long yawed cylinder[J]. Journal of Fluid Mechanics, 1985, 150:329-356. [19] ARNAL D, JUILLEN J C, RENEAUX J, et al. Effect of wall suction on leading edge contamination[J]. Aerospace Science and Technology, 1997, 1(8):505-517. [20] BIPPES H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J]. Progress in Aerospace Sciences, 1999, 35(4):363-412. [21] SARIC W, REED H. Crossflow instabilities-theory & technology[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [22] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [23] MARTIN M, CARPENTER A, SARIC W. Swept-wing laminar flow control studies using Cessna O-2A test aircraft[C]//2008 U.S. Air Force T&E Days. Reston:AIAA, 2008. [24] SARIC W S, WEST D E, TUFTS M W, et al. Experiments on discrete roughness element technology for swept-wing laminar flow control[J]. AIAA Journal, 2019, 57(2):641-654. [25] OWENS L R, BEELER G B, BALAKUMAR P, et al. Flow disturbance and surface roughness effects on cross-flow boundary-layer transition in supersonic flows[C]//44th AIAA Fluid Dynamics Conference. Reston:AIAA, 2014. [26] RESHOTKO E. Boundary-layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8:311-349. [27] MACK L. Boundary-layer linear stability theory:N84-3345723-24[R]. Washington, D.C.:NASA, 1984. [28] REED H L, SARIC W S, ARNAL D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28:389-428. [29] FLORYAN J M. On the Görtler instability of boundary layers[J]. Progress in Aerospace Sciences, 1991, 28(3):235-271. [30] SARIC W S. Görtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26:379-409. [31] REN J, LIU J X, FU S. The role of Görtler vortices in the hypersonic boundary layer transition[C]//44th AIAA Fluid Dynamics Conference. Reston:AIAA, 2014. [32] HALL P, MALIK M R, POLL D I A. On the stability of an infinite swept attachment line boundary layer[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1984, 395(1809):229-245. [33] THEOFILIS V. Spatial stability of incompressible attachment-line flow[J]. Theoretical and Computational Fluid Dynamics, 1995, 7(3):159-171. [34] HEEG R S. Stability and transition of attachment-line flow[M]. Enschede Thesis:Universiteit Twente, 1998. [35] 王哲夫, 王亮, 符松. 后掠Hiemenz流动失稳敏感性分析及等离子体控制[C]//第十届全国流体力学学术会议摘要集,2018. WANG Z F, WANG L, FU S. Sensitivity analysis of swept Hiemenz flow instability and plasma control[C]//Abstracts of the 10th National Conference on Fluid Mechanics, 2018(in Chinese). [36] PFENNINGER W. Some results from the X-21 program. Part I. Flow phenomenon at the leading edge of swept wings:AGARDograph-97[R]. Pairs:AGARD, 1965. [37] POLL D I A. Some aspects of the flow near a swept attachment line with particular reference to boundary layer transition[D]. Bedford:Cranfield Institute of Technology, 1978. [38] POLL D I A. Transition in the infinite swept attachment line boundary layer[J]. Aeronautical Quarterly, 1979, 30(4):607-629. [39] POLL D I A. Boundary layer transition on the windward face of Space Shuttle during re-entry[C]//20th Thermophysics Conference. Reston:AIAA, 1985. [40] ARNAL D. Boundary layer transition:prediction, application to drag reduction:AGARD R-786[R]. Paris:AGARD, 1992. [41] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [42] 孙爵.超声速机翼层流设计技术研究[D].中国:中国航空研究院, 2021. SUN J. Research on laminar flow design technology of supersonic wing[D]. China:Chinese Aeronautical Establishment, 2021(in Chinese). [43] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2):129-139, 154. LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2):129-139, 154(in Chinese). [44] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29. [45] MALMUTH N, FEDOROV A, SHALAEV V, et al. Problems in high speed flow prediction relevant to control[C]//2nd AIAA Theoretical Fluid Mechanics Meeting. Reston:AIAA, 1998. [46] SARIC W, RUBEN CARRILLO J JR, REIBERT M. Leading-edge roughness as a transition control mechanism[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998. [47] CORKE T C. Plasma actuator array development for cross-flow instability control[D]. Notre Dame:University of Notre Dame, 2001. [48] RASHEED A, HORNUNG H G, FEDOROV A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40(3):481-489. [49] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. [50] 赵瑞, 严昊, 席柯, 等. 声学超表面抑制第一模态研究[J]. 航空科学技术, 2020, 31(11):104-112. ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science & Technology, 2020, 31(11):104-112(in Chinese). [51] 王蔚彰, 孔维萱, 严昊, 等. 声学超表面抑制高速边界层内宽频不稳定模态研究[J/OL]. 北京航空航天大学学报,(2021-07-13)[2021-09-02].DOI:10.13700/j.bh.1001-5965.2021.0235. WANG W Z, KONG W X, YAN H, et al. Acoustic metasurfaces for the stabilization of broadband unstable modes in high speed boundary layer[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2021-07-13)[2021-09-02].DOI:10.13700/j.bh.1001-5965.2021.0235(in Chinese). [52] REIBERT M, SARIC W, RUBEN CARRILLO J JR, et al. Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer[C]//34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996. [53] OWENS L R, BEELER G, KING R, et al. Supersonic crossflow transition control in ground and flight tests[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [54] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [55] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42:505-529. [56] SCHUELE C Y, CORKE T C, MATLIS E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. [57] SERPIERI J, YADALA VENKATA S, KOTSONIS M. Conditioning of cross-flow instability modes using dielectric barrier discharge plasma actuators[J]. Journal of Fluid Mechanics, 2017, 833:164-205. [58] DÖRR P C, KLOKER M J. Crossflow transition control by upstream flow deformation using plasma actuators[J]. Journal of Applied Physics, 2017, 121(6):063303. [59] SCHUELE C Y. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[D]. Notre Dame:University of Notre Dame, 2011. [60] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956. [61] VAN INGEN J. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956. [62] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004:1-224. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004:1-224(in Chinese). [63] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese). [64] MALIK M, ZANG T, BUSHNELL D. Boundary layer transition in hypersonic flows[C]//2nd International Aerospace Planes Conference. Reston:AIAA, 1990. [65] BERRY S, CHEN F J, WILDER M, et al. Boundary layer transition experiments in support of the hypersonics program[C]//39th AIAA Thermophysics Conference. Reston:AIAA, 2007. [66] CHANG C L. Langley stability and transition analysis code(LASTRAC) version 1.2 user manual:NASA/TM-2004-213233[R].Washington, D.C.:NASA, 2004. [67] CHOUDHARI M, CHANG C L, JENTINK T, et al. Transition analysis for the HIFiRE-5 vehicle[C]//39th AIAA Fluid Dynamics Conference. Reston:AIAA, 2009. [68] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese). [69] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展[J]. 空气动力学学报, 2020, 38(2):368-378. HUANG Z F, WAN B B, DUAN M C. Progresses in engineering application research on hypersonic flow stability and transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):368-378(in Chinese). [70] 黄章峰, 肖凌晨, 罗纪生. 超声速边界层转捩预测eN方法及其软件开发[J]. 空气动力学学报, 2018, 36(2):279-285. HUANG Z F, XIAO L C, LUO J S. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2):279-285(in Chinese). [71] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191. [72] SCHRAUF G. LILO 2.1 user's guide and tutorial:GSSC Technical Report 6[R]. Boudreau-Ouest:GSSC, 2006. [73] KRUMBEIN A. Automatic transition prediction and application to three-dimensional wing configurations[J]. Journal of Aircraft, 2007, 44(1):119-133. [74] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction with the NASA trap wing model[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [75] 董军, 高德峰, 任园军, 等. eN-Database转捩预测方法在三维非结构求解器中的耦合与应用[J]. 沈阳航空航天大学学报, 2015, 32(2):11-17. DONG J, GAO D F, REN Y J, et al. Coupling and application of eN-database method to transition prediction in a 3D unstructured solver[J]. Journal of Shenyang Aerospace University, 2015, 32(2):11-17(in Chinese). [76] DI PASQUALE D, RONA A, GARRETT S J. selective review of CFD transition models[C]//39th AIAA Fluid Dynamics Conference, 2009. [77] WHITE F M. Viscous fluid flow[M]. 2nd ed. New York:McGraw-Hill, 1991. [78] MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3):278-289. [79] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2):254-264, 180. XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2):254-264, 180(in Chinese). [80] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [81] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58:36-59. [82] FRAUHOLZ S, REINARTZ B U, MVLLER S, et al. Transition prediction for scramjets using γ-Reθt model coupled to two turbulence models[J]. Journal of Propulsion and Power, 2015, 31(5):1404-1422. [83] CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [84] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012. [85] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3):295-301. ZHANG Y L, WANG G X, MENG D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese). [86] 张毅锋, 张益荣, 毛枚良, 等. γ-Reθt转捩模型在高超软件平台Chant上的标定研究[C]//第十七届全国高超声速气动力/热学术交流会, 2013. ZHANG Y F, ZHANG Y R, MAO M L, et al. Calibration research of γ-Reθt transition model on chant software platform[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [87] 尚庆, 陈林, 袁香江. γ-Reθt模型在高超声速钝双楔数值模拟中的应用[C]//第十七届全国高超声速气动力/热学术交流会, 2013. SHANG Q, CHEN L, YUAN X J. Application of γ-Reθt model in numerical simulation of hypersonic blunt double wedge[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [88] 刘周, 龚安龙, 杨云军, 等. 基于γ-Reθt转捩模型的尖锥超声速流动转捩模拟[C]//第十七届全国高超声速气动力/热学术交流会, 2013. LIU Z, GONG A L, YANG Y J, et al. Transition simulation of pointed cone supersonic flow based on γ-Reθt transition model[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [89] 郑赟, 李虹杨. 基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J]. 推进技术, 2015, 36(6):839-845. ZHENG Y, LI H Y. Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J]. Journal of Propulsion Technology, 2015, 36(6):839-845(in Chinese). [90] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. [91] HAO Z H, YAN C, QIN Y P, et al. Improved γ-Reθt model for heat transfer prediction of hypersonic boundary layer transition[J]. International Journal of Heat and Mass Transfer, 2017, 107:329-338. [92] YOU Y C, LUEDEKE H, EGGERS T, et al. Application of the y-reot transition model in high speed flows[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston AIAA, 2012. [93] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1):193-202. [94] 宋博, 李椿萱. 基于Favré平均的高超声速可压缩转捩预测模型[J]. 中国科学:技术科学, 2010, 40(8):879-885. SONG B, LI C X. Prediction model of hypersonic compressible transition based on Favré average[J]. Scientia Sinica (Technologica), 2010, 40(8):879-885(in Chinese). [95] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187. [96] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34:62-69. [97] ZHOU L, YAN C, HAO Z H, et al. Improved k-ω-γ model for hypersonic boundary layer transition prediction[J]. International Journal of Heat and Mass Transfer, 2016, 94:380-389. [98] MACK L M. Transition prediction and linear stability theory:N78-1431605-34[R]. Washington, D.C.:NASA, 1977. [99] TOKUGAWA N, KWAK D Y, YOSHIDA K, et al. Transition measurement of natural laminar flow wing on supersonic experimental airplane NEXST-1[J]. Journal of Aircraft, 2008, 45(5):1495-1504. [100] BOUCHARDY A M, DURAND G. Processing of infrared thermal images for aerodynamic research[C]//Proceeding of SPIE, 1983, 397:304-309. [101] KOWALEWSKI T, LIGRANI P, DREIZLER A, et al. Temperature and heat flux[M]//Springer handbook of experimental fluid mechanics. Berlin:Springer Berlin Heidelberg, 2007:487-561. [102] WATKINS N, GOODMAN K Z, PEAK S. Transition detection at cryogenic temperatures using a carbon-based resistive heating layer coupled with temperature sensitive paint[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [103] 王猛, 李玉军, 赵荣奂, 等. 基于电加热涂层的红外热像转捩探测技术[J]. 气动研究与实验, 2021, 33(1):46-52. WANG M, LI Y J, ZHAO R H, et al. The infrared thermography boundary transition detecting technique based on electric heating coating[J]. Aerodynamic Research & Experiment, 2021, 33(1):46-52(in Chinese). [104] OBARA C J. Sublimating chemical technique for boundary-layer flow visualizationin flight testing[J]. Journal of Aircraft, 1988, 25(6):493-498. [105] RADEZTSKY R H, REIBERT M S, SARIC W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11):1370-1377. [106] WHITE E, SARIC W. Application of variable leading-edge roughness for transition control on swept wings[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000. [107] HUNT L, SARIC W. Boundary-layer receptivity of three-dimensional roughness arrays on a swept-wing[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011. [108] ARCHAMBAUD J P, LOUIS F, SERAUDIE A, et al. Natural transition in supersonic flows:Flat plate, swept cylinder, swept wing[C]//34th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2004. [109] UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6):1294-1306. [110] BOUSLOG S, AN M, HARTMANN L, et al. Review of boundary layer transition flight data on the Space ShuttleOrbiter[C]//29th Aerospace Sciences Meeting. Reston:AIAA, 1991. [111] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [112] LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [113] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146. [114] IDE Y, YOSHIDA K, UEDA Y. Stability characteristics of supersonic natural laminar flow wing design concept[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [115] ARNAL D, UNCKEL C G, KRIER J, et al. Supersonic laminar flow control studies in the SUPERTRAC project[C]//Proceedings of 25th Congress of International Council of the Aeronautical Science, 2006. [116] IULIANO E, DIN I S E, DONELLI R, et al. Natural laminar flow design of a supersonic transport jet wing body[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [117] IULIANO E, QUAGLIARELLA D, DONELLI R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of Aircraft, 2011, 48(4):1147-1162. |