[1] 张帅, 余雄庆. 中短程客机总体参数敏感性分析[J]. 航空学报, 2013, 34(4):809-816. ZHANG S, YU X Q. Sensitivity analysis of primary parameters in preliminary design of a short/medium-haul airliner[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):809-816(in Chinese). [2] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28. [3] FORRESTER A, SOBESTER A, KEANE A. Engineering design via surrogate modelling:a practical guide[M]. Chichester:John Wiley & Sons, 2008:33-59. [4] 张陈力子, 宋晓玉, 祝雯生, 等. 利用代理模型的客机总体参数敏感性分析[J]. 空军工程大学学报:自然科学版, 2016, 17(3):18-22. ZHANG C L Z, SONG X Y, ZHU W S, et al. Analysis of parameters sensitivity for airliner conceptual design using surrogate-model[J]. Journal of Air Force Engineering University:Natural Science Edition, 2016, 17(3):18-22(in Chinese). [5] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法研究[J]. 航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L, et al. Efficient surrogate-based aerodynamic shape optimization with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese). [6] BOUHLEL M A, BARTOLI N, OTSMANE A, et al. An improved approach for estimating the hyperparameters of the Kriging model for high-dimensional problems through the partial least squares method[J]. Mathematical Problems in Engineering, 2016, 2016:1-11. [7] 武亮, 左向梅, 邱勇. 基于SVR多学科设计优化代理模型技术研究[J]. 飞行力学, 2020, 38(2):23-28. WU L, ZUO X M, QIU Y. Study of surrogate model technology in multidisciplinary design optimization based on SVR[J]. Flight Dynamics, 2020, 38(2):23-28(in Chinese). [8] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:The MIT Press, 2016:3-10. [9] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [10] DENG L, WANG Y, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1):65-78. [11] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2):294-299. CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamic Sinica, 2018, 36(2):294-299(in Chinese). [12] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11):322468. ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322468(in Chinese). [13] 王宇, 余雄庆. 考虑不确定性的飞机总体参数优化方法[J]. 航空学报, 2009, 30(10):1883-1888. WANG Y, YU X Q. Optimization method for aircraft conceptual design under uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1883-1888(in Chinese). [14] CHAI X, YU X, WANG Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body air-craft[J]. Chinese Journal of Aeronautics, 2018, 31(1):99-106. [15] GOOGLE. TensorFlow:An end-to-end open source machine learning platform[EB/OL]. (2019-8-1)[2019-8-10]. https://www.tensorflow.org. [16] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine (ICML-10),2010:807-814. [17] NEWEY W K. Adaptive estimation of regression models via moment restrictions[J]. Journal of Econometrics, 1988, 38(3):301-339. [18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[DB/OL]. arXiv preprint:1502.03167, 2015. [19] MICROSOFT. Neural Network Intelligence[EB/OL]. (2019-08-05)[2019-09-01]. https://github.com/microsoft/nni. [20] BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization[C]//Advances in Neural Information Processing Systems, 2011:2546-2554. [21] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[DB/OL]. arXiv preprint:1207.0580, 2012. [22] BOUHLEL M A, HWANG J T, BARTOLI N, et al. A Python surrogate modeling framework with derivatives[J]. Advances in Engineering Software, 2019, 135:102662. [23] 闻新, 李新, 张兴旺, 等. 应用MATLAB实现神经网络[M]. 北京:国防工业出版社, 2015:96-137. WEN X, LI X, ZHANG X W, et al. Application of MATLAB neural network[M]. Beijing:National Defense Industry Press, 2015:96-137(in Chinese). [24] 杨哲, 李曙林, 周莉, 等. 飞机作战生存力设计参数灵敏度分析[J]. 北京航空航天大学学报, 2013, 39(8):1096-1101. YANG Z, LI S L, ZHOU L, et al. Design parameters sensitivity analysis of aircraft survivability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8):1096-1101(in Chinese). [25] WILKINSON L. Revising the Pareto chart[J]. The American Statistician, 2006, 60(4):332-334. |