航空学报 > 2021, Vol. 42 Issue (4): 524353-524353   doi: 10.7527/S1000-6893.2020.24353

基于深度神经网络的客机总体设计参数敏感性分析

范周伟1, 余雄庆1, 王朝2, 钟伯文2   

  1. 1. 南京航空航天大学 航空学院 飞行器先进设计技术国防重点学科实验室, 南京 210016;
    2. 中国商飞北京民用飞机技术研究中心, 北京 102211
  • 收稿日期:2020-06-01 修回日期:2020-08-18 发布日期:2020-09-02
  • 通讯作者: 余雄庆 E-mail:yxq@nuaa.edu.cn
  • 基金资助:
    中国商飞北京民用飞机技术研究中心民用飞机设计数字仿真技术北京市重点实验室开放课题

Sensitivity analysis of key design parameters of commercial aircraft using deep neural network

FAN Zhouwei1, YU Xiongqing1, WANG Chao2, ZHONG Bowen2   

  1. 1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Beijing Aeronautical Science & Technology Research Institute, COMAC, Beijing 102211, China
  • Received:2020-06-01 Revised:2020-08-18 Published:2020-09-02
  • Supported by:
    Funded by Beijing Key Laboratory of Civil Aircraft Design and Simulation Technology, Beijing Aeronautical Science & Technology Research Institute, Commercial Aircraft Corporation of China

摘要: 飞机总体主要设计参数敏感性分析揭示了总体主要设计参数对飞机特性指标的影响,有助于总体设计方案的决策。针对宽体客机总体主要设计参数敏感性问题,根据其总体主要设计参数和特性指标的特点,以及多学科间的耦合关系,建立了深度神经网络模型。该深度神经网络模型以客机总体主要设计参数为输入,对特性指标进行预测。在深度神经网络模型中,设置了多个输入层、多个输出层以及多个分块的隐藏层,从而模拟客机总体主要设计参数对特性指标的影响以及不同特性指标之间的相互作用。测试结果表明,与传统代理模型相比,深度神经网络模型对客机特性指标的预测精度更高,多参数适应性更好。利用该深度神经网络模型对客机总体主要设计参数进行敏感性分析。分析结果表明,机翼1/4弦线后掠角在30°~31.5°时,有利于减少最大起飞重量和起飞平衡场长;发动机海平面最大静推力和机翼面积对客机直接使用成本、最大起飞重量等特性指标的影响最为显著。

关键词: 飞机总体设计, 敏感性分析, 深度神经网络, 客机, 代理模型

Abstract: The sensitivity analysis of key design parameters of aircraft reveals the relationship between the key design parameters and aircraft characteristics, facilitating the decision making in aircraft preliminary design. Aiming at the key design parameter sensitivity of wide-body commercial aircraft, we establish a deep neural network model based on the features of key design parameters and aircraft characteristics and the coupling relationship among multiple disciplines, taking the key design parameters as input to predict the aircraft characteristics. In this model, multiple input layers, multiple output layers, and multiple blocks of hidden layers are set to simulate the effects of key design parameters on aircraft characteristics and the interactions among different aircraft characteristics. Comparisons with traditional surrogate models reveal that the deep neural network model has higher prediction accuracy and better adaptability to the aircraft characteristics. The proposed model is then used to analyze the sensitivity of the commercial aircraft primary parameters. The analysis results show that a lower maximum takeoff weight and a shorter takeoff balanced field length can be achieved when the wing sweep at 1/4 chord is between 30° to 31.5°. The maximum static thrust of engines at sea level and the wing area have the most significant influence on the direct operation cost, maximum takeoff weight, and other characteristics.

Key words: aircraft conceptual design, sensitivity analysis, deep neural network, commercial aircraft, surrogate model

中图分类号: