王刚, 张彬乾, 张明辉, 桑为民, 袁昌盛, 李栋
收稿日期:
2019-03-25
修回日期:
2019-04-03
出版日期:
2019-09-15
发布日期:
2019-05-10
通讯作者:
张彬乾
E-mail:bqzhang@nwpu.edu.cn
基金资助:
WANG Gang, ZHANG Binqian, ZHANG Minghui, SANG Weimin, YUAN Changsheng, LI Dong
Received:
2019-03-25
Revised:
2019-04-03
Online:
2019-09-15
Published:
2019-05-10
Supported by:
摘要: 翼身融合(BWB)布局作为下一代亚声速民机主流方案已得到共识,研究步伐正在加快,进入工程应用指日可待。在回顾国内外BWB民机发展历程的基础上,简要阐述了飞翼布局(FW)和BWB布局的差异,明确了BWB概念特征及应用范围。聚焦BWB飞机总体气动设计中的技术挑战和对策,重点论述分析了BWB布局技术瓶颈及设计思想演化,新型结构与重量估算、适航符合性等总体设计问题,气动布局设计原则、高-低速性能协调等气动布局设计问题,飞-发干扰与一体化设计、新型发动机技术应用等飞机-发动机综合集成设计问题,降噪技术及其衍生的设计冲突、考虑噪声指标的总体设计策略等问题。并从技术进展和工程可实现性角度,展望了BWB民机的发展趋势。
中图分类号:
王刚, 张彬乾, 张明辉, 桑为民, 袁昌盛, 李栋. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046-623046.
WANG Gang, ZHANG Binqian, ZHANG Minghui, SANG Weimin, YUAN Changsheng, LI Dong. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 623046-623046.
[1] | AIRBUS G M F. Growing horizons 2017-2036[R]. Toulouse:Airbus S.A.S., 2017. |
[2] | TINSETH R. Current market outlook 2017-2036[R]. Seattle, WA:Boeing Commercial Airplanes, 2017. |
[3] | NICKOL C, MCCULLERS L. Hybrid wing body configuration system studies:AIAA-2009-0931[R]. Reston, VA:AIAA, 2009. |
[4] | CLEAN SKY. Clean Sky 2 joint undertaking development plan[EB/OL].[2018-11-03].http://www.cleansky.eu/key-documents. |
[5] | CHERYL A, HELHE P, PIOTR D. Final evaluation of the clean sky joint undertaking (2008-2016) operating under FP7[EB/OL].[2018-11-03]. http://www.cleansky.eu/key-documents. |
[6] | HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for silent fuel-efficient aircraft[J]. Journal of Aircraft, 2010, 47(3):956-969. |
[7] | CESARE A, SCHWARTZ H E, HILEMAN J I. Assessment of technologies for the silent aircraft initiative[J]. Journal of Propulsion and Power, 2009, 25(6):1153-1162. |
[8] | TONG M T, JONES S M, HALLER W J, et al. Engine conceptual design studies for a hybrid wing body aircraft[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2009. |
[9] | LIOU M S, KIM H, LIOU M F. Challenges and progress in aerodynamic design of hybrid wing body aircraft with embedded engines:NASA/TM-2016-218309[R]. Cleveland, OH:Glenn Research Center, 2016. |
[10] | MODY P, SATO S, HALL D, et al. Conceptual design of an N+3 hybrid wing body subsonic transport:AIAA-2010-4812[R]. Reston, VA:AIAA, 2010. |
[11] | BONET J T, SCHELLENGE H G, RAWDON B K, et al. Environmentally Responsible Aviation (ERA) Project N+2 advanced vehicle concepts study and conceptual design of Subscale Test Vehicle (STV) final report:CR-2011-216519[R]. Edwards:Dryden Flight Research Center, 2011. |
[12] | 王元元. 民用飞机将要迎来新的技术跨越[J]. 国际航空, 2016(10):30-33. WANG Y Y. Civil aircraft will usher in new technological breakthroughs[J]. International Aviation, 2016(10):30-33(in Chinese). |
[13] | 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese). |
[14] | LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25. |
[15] | 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008, 29(1):49-59. ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59(in Chinese). |
[16] | OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82:1-23. |
[17] | 朱自强, 王晓璐, 吴宗成, 等. 高经济性静音中航程民机设计方法讨论[J]. 航空学报, 2008, 29(3):562-572. ZHU Z Q, WANG X L, WU Z C, et al. Discussion of design methods for silent and fuel efficient medium range civil transport[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):562-572(in Chinese). |
[18] | BROWN M, VOS R. Conceptual design and evaluation of blended-wing body aircraft:AIAA-2018-0522[R]. Reston, VA:AIAA, 2018. |
[19] | REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission:AIAA-2013-2414[R]. Reston, VA:AIAA, 2013. |
[20] | KANAZAKI M, HANIDA R, NARA T, et al. Challenge of design exploration for small blended wing body using unstructured flow solver[J]. Computers & Fluids, 2013, 85(10):71-77. |
[21] | THOMAS R H, BURLEY C L, LOPES L V, et al. System noise assessment and the potential for low noise hybrid wing body aircraft with open rotor propulsion:AIAA-2014-0258[R]. Reston, VA:AIAA, 2014. |
[22] | MULYANTO T, LUTHFI NURHAKIM M. Conceptual design of blended wing body business jet aircraft[J]. Journal of Kones, 2013(20):299-306. |
[23] | LIEBECK R, PAGE M, RAWDON B. Blended-wing-body subsonic commercial transport:AIAA-1998-0438[R]. Reston, VA:AIAA, 1998. |
[24] | WOOD R M, BAUER X S. Flying wings/flying fuselages:AIAA-2001-0311[R]. Reston, VA:AIAA, 2001. |
[25] | WOOD R M. The contributions of vincent justus burnelli:AIAA-2003-0292[R]. Reston, VA:AIAA, 2003. |
[26] | KATZ J, BYRNE S, HAHL R. Stall resistance features of lifting-body airplane configurations[J]. Journal of Aircraft, 1999, 36(2):471-474. |
[27] | SMITH H. College of aeronautics blended wing body development programme[C]//ICAS, 2000. |
[28] | MORRIS A J. MOB-A European distributed multi-disciplinary design and optimization project:AIAA-2002-5444[R]. Reston, VA:AIAA, 2002. |
[29] | TRITTLER M, FICHTER W, VOITNITSCHMANN R, et al. Preliminary system identification of the blended wing body flight demonstrator VELA 2 from flight data:AIAA-2008-6896[R]. Reston, VA:AIAA, 2008. |
[30] | BOLSUNOVSKY A L, BUZOVERYA N P, GUREVICH B I, et al.Flying wing-Problems and decisions[J]. Aircraft Design, 2001, 4(4):193-219. |
[31] | RISCH T, COSENTINO G, REGAN C, et al. X-48B flight test progress overview:AIAA-2009-0934[R]. Reston, VA:AIAA, 2009. |
[32] | 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5):671-679. HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5):671-679(in Chinese). |
[33] | 宋笔锋, 张彬乾, 韩忠华. 大型客机总体设计准则与概念创新[J]. 航空学报, 2008, 29(3):583-595. SONG B F, ZHANG B Q, HAN Z H. The study of concept design criteria for large-scale passenger aircraft with new technologies[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):583-595(in Chinese). |
[34] | 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019,40(1):1-17. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(1):1-17(in Chinese). |
[35] | GOLDBERG C, NALIANDA D, SINGH R. Techno-economic and environmental risk assessment of a blended wing body with distributed propulsion:AIAA-2015-4024[R]. Reston, VA:AIAA, 2015. |
[36] | 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011, 32(10):1761-1769. ZHANG S G, LU Y H, GONG L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1761-1769(in Chinese). |
[37] | 赵志高, 张曙光. BWB客机经济性相关设计参数的影响分析[J]. 北京航空航天大学学报, 2011, 37(8):937-942. ZHAO Z G, ZHANG S G. Analysis of effects of BWB airliner design parameters on its economic profitability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8):937-942(in Chinese). |
[38] | CUI R, LI Q, PAN T, et al. Streamwise-body-force-model for rapid simulation combining internal and external flow fields[J]. Chinese Journal of Aeronautics, 2016,29(5):1205-1212. |
[39] | 邓海强, 余雄庆. 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报, 2013, 34(5):1200-1208. DENG H Q, YU X Q. Configuration optimization of subsonic blended wing body UAV conceptual design[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1200-1208(in Chinese). |
[40] | 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2015, 36(1):278-289. JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):278-289(in Chinese). |
[41] | LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516. |
[42] | CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation of micro vortex generators on controlling flow separation over SCCH high-lift configuration[J]. Science China:Technological Science, 2012, 55(7):1943-1953. |
[43] | 李沛峰, 张彬乾, 陈迎春. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报,2011,32(6):971-977. LI P F, ZHANG B Q, CHEN Y C. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese). |
[44] | 李沛峰, 张彬乾, 陈迎春. 基于工程的跨声速机翼两步优化设计方法[J]. 航空学报,2011, 32(12):2153-2162. LI P F, ZHANG B Q, CHEN Y C. A two-step optimization method of transonic wing design for engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2153-2162(in Chinese). |
[45] | 褚胡冰, 张彬乾, 陈迎春,等. 微型后缘装置增升效率及几何参数影响研究[J].航空学报,2012, 33(3):381-389. CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation on mini-ted efficiency and impact of its geometrical parameters[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):381-389(in Chinese). |
[46] | 李路路, 张彬乾, 李沛峰, 等. 大型客机无尾布局航向组合舵面控制技术研究[J]. 飞行力学, 2013, 31(5):450-454. LI L L, ZHANG B Q, LI P F, et al. Research on control technology of combined control surface for large tailless civil aircraft[J]. Flight Dynamics, 2013, 31(5):450-454(in Chinese). |
[47] | 李沛峰, 张彬乾, 陈迎春, 等. 无尾布局翼型的DISC设计研究[J]. 飞行力学, 2012, 39(4):49-52. LI P F, ZHANG B Q, CHEN Y C, et al. Airfoil design for tailless configurations using DISC algorithm[J]. Flight Dynamics, 2012, 39(4):49-52(in Chinese). |
[48] | 李沛峰, 张彬乾, 陈迎春. 基于响应面和遗传算法的翼型优化设计方法研究[J]. 西北工业大学学报,2012, 30(3):395-400. LI P F, ZHANG B Q, CHEN Y C. An effective transonic airfoil optimization method using response surface model (RSM)[J]. Journal of Northwestern Polytechnical University, 2012, 30(3):395-400(in Chinese). |
[49] | 顾文婷, 陈迎春, 马坤, 等. 基于自由变形方法的翼身融合布局民机翼型优化设计[J]. 西北工业大学学报, 2017, 35(S1):70-76. GU W T, CHEN Y C, MA K, et al. Airfoil optimization for blended wing body civil transport based on free form deformation[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1):70-76(in Chinese). |
[50] | SHEN D, ZHANG B Q, CHEN Y C. On belly-flap for pitch control at transonic airfoil[J]. International Journal of Plant Engineering and Management, 2011, 16(2):77-83. |
[51] | 田晓虎, 张彬乾, 沈冬. 引入最优顶点的混合方法及其在翼型优化设计中的应用[J]. 机械科学与技术, 2012, 31(12):124-127. TIAN X H, ZHANG B Q, SHEN D. Hybrid optimization method based on the best vertex and its application to optimization design of airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12):124-127(in Chinese). |
[52] | ZHANG M H, CHEN Z L, ZHAGN B Q. A conceptual design platform for blended wing-body transports[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016. |
[53] | GU W T, CHEN Z L, ZHAGN B Q. Physically-based multidisciplinary design optimization framework coupling airframe and propulsion[C]//30th Congress of the International Council of the Aeronautical Sciences,2016. |
[54] | 李沛峰, 张彬乾, 陈真利, 等. 一种无尾翼身融合飞机的中央机体:ZL 201210053760.X[P]. 2013-12-02. LI P F, ZHANG B Q, CHEN Z L, et al. A tailless body fused to the central body of an aircraft:ZL 201210053760.X[P]. 2013-12-02(in Chinese). |
[55] | 褚胡冰, 张彬乾, 陈真利, 等. 一种无尾飞机的组合舵面:ZL 201310005860.X[P]. 2016-04-24. CHU H B, ZHANG B Q, CHEN Z L, et al. A combined control surface of a tailless aircraft:ZL 201310005860.X[P]. 2016-04-24(in Chinese). |
[56] | 李沛峰, 张彬乾, 陈真利, 等. 一种采用混合翼身的飞行器气动外形:ZL 201210143930.3[P]. 2014-03-12. LI P F, ZHANG B Q, CHEN Z L, et al. An aircraft aerodynamic profile with blended wing body:ZL 201210-143930.3[P]. 2014-03-12(in Chinese). |
[57] | 吴立新, 左重, 刘平生,等. 无尾飞翼气动布局是UCAV总体设计的最佳选择[J]. 国际航空, 2003(1):42-44. WU L X, ZUO C, LIU P S,et al. Tailless flying wing configuration:The best choice for UCAV[J]. International Aviation, 2003(1):42-44(in Chinese). |
[58] | 朱自强, 吴宗成,陈迎春,等. 民机空气动力设计先进技术[M]. 上海:上海交通大学出版社, 2013:17-27, 96-98. ZHU Z Q,WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiao Tong University Press, 2013:17-27, 96-98(in Chinese). |
[59] | ACTION J. Structural layout of a hybrid wing body transport:AIAA-2017-0101[R]. Reston, VA:AIAA, 2017. |
[60] | WICK A T, HOOKER J R, CLARK C M. Powered low speed testing of the hybrid wing body:AIAA-2017-0100[R]. Reston, VA:AIAA, 2017. |
[61] | ODLE R C, ROMAN D, RAWDON B K. Blended wing body cargo airplane:US 8366050 B2[P]. 2013. |
[62] | PRAKASH I, MUKHERJEE P, RAVICHANDRAKUMAR K B. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft[J]. INCAS Bulletin, 2017, 9(3):71. |
[63] | GARMENDIA D C, CHAKRABORTY I, TRAWICK D R, et al. Assessment of electrically actuated redundant control surface layouts for a hybrid wing body concept:AIAA-2014-2428[R]. Reston, VA:AIAA, 2014. |
[64] | WILDSCHEK A. Flight dynamics and control related challenges for design of a commercial blended wing body aircraft:AIAA-2014-0599[R]. Reston, VA:AIAA, 2014. |
[65] | COLLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-real solutions for environmental challenges facing aviation[C]//ICAS, 2010. |
[66] | NASA Langley Research Center. NASA N+3 MIT team final review[EB/OL]. (2018-10-15)[2019-06-12]. http://web.mit.edu/drela/Public/N+3/Final_slides.pdf. |
[67] | GUY N. Boeing ponders reviving X-48 for new tests[EB/OL]. (2016-02-29)[2018-10-15]. http://aviationweek.com/commercial-aviation/boeing-ponders-reviving-x-48-new-tests. |
[68] | VOSKUIJL M, ROCCA G, DIRCKEN F. Controllability of blended wing body aircraft[C]//Proceedings of the 26th International Congress of the Aeronautical Sciences, ICAS 2008, including the 8th AIAA Aviation Technology, Integration and Operations (AIO) Conference, 2008. |
[69] | WILDSCHEK A, HAVAR T, PLÖTNER K. An all-composite, all-electric, morphing trailing edge device for flight control on a blended-wing-body airliner[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 224(1):1-9. |
[70] | HAGEMAN R. Rudder incorporated winglet design for blended wing body aircraft[D]. Delft:Delft University of Technology, 2016. |
[71] | NASIR R E M, MAZLAN N S C, ALI Z M, et al. A blended wing body airplane with a close-coupled, tilting tail[J]. IOP Conference Series:Materials Science and Engineering, 2016, 152(1):2021. |
[72] | NASIR R E M, KUNTJORO W, WISNOE W. Aerodynamic, stability and flying quality evaluation on a small blended wing-body aircraft with canard foreplanes[J]. Procedia Technology, 2014(15):784-792. |
[73] | STAELENS Y, BLACKWELDER R, PAGE M. Novel pitch control effectors for a blended wing body airplane in takeoff and landing configuration:AIAA-2007-0068[R]. Reston, VA:AIAA, 2007. |
[74] | HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for "silent aircraft":AIAA-2007-0453[R]. Reston, VA:AIAA, 2007. |
[75] | ALMOSNINO D. A low subsonic study of the NASA N2A hybrid wing-body using an inviscid Euler-adjoint solver:AIAA-2016-3267[R]. Reston, VA:AIAA, 2016. |
[76] | KAWAI R T. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport:NF1676L-14465[R]. Washington, D.C.:NASA Langley Research Center, 2011. |
[77] | 王元元. 波音持续深化BWB布局研究[EB/OL]. (2018-04-08)[2018-11-03].http://www.aeroinfo.com.cn/Item/22455.aspx. WANG Y Y. Boeing continues to deepen BWB layout research[EB/OL]. (2018-04-08)[2018-11-03].http://www.aeroinfo.com.cn/Item/22455.aspx (in Chinese). |
[78] | FELDSTEIN A W, LAZZARA D, PRINCEN N, et al. Model uncertainty:A challenge in nonlinear coupled multidisciplinary system design:AIAA-2018-0652[R]. Reston, VA:AIAA, 2018. |
[79] | LYU Z, MARTINS J. Aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-0283[R]. Reston, VA:AIAA, 2013. |
[80] | LYU Z, MARTINS J. RANS-based aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-2586[R]. Reston, VA:AIAA, 2013. |
[81] | LYU Z, MARTINS J. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617. |
[82] | REIST T A, ZINGG D W. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft:AIAA-2015-3292[R]. Reston, VA:AIAA, 2015. |
[83] | NICKOL C. Hybrid wing body configuration scaling study:AIAA-2012-0337[R]. Reston, VA:AIAA, 2012. |
[84] | REIST T A, ZINGG D W. Aerodynamic design of blended wing-body and lifting-fuselage aircraft:AIAA-2016-3874[R]. Reston, VA:AIAA, 2016. |
[85] | REIST T A, ZINGG D W. Aerodynamically optimal regional aircraft concepts:Conventional and blended-wing-body designs:AIAA-2014-0905[R]. Reston, VA:AIAA, 2014. |
[86] | YANG S, PAGE M, SMETAK E J. Achievement of NASA New Aviation Horizons N+2 goals with a blended-wing-body X-Plane designed for the regional jet and single-aisle jet markets:AIAA-2018-0521[R]. Reston, VA:AIAA, 2018. |
[87] | DEHPANAH P, NEJAT A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43:96-110. |
[88] | BROWN M. Conceptual design of blended wing body airliners within a semi-automated design framework[D]. Delft:Delft University of Technology, 2017. |
[89] | LIOU M F, KIM H, LEE B, et al. Aerodynamic design of the hybrid wing body propulsion-airframe integration:GRC-E-DAA-TN43200[R]. Cleveland, OH:NASA Glenn Research Center, 2017. |
[90] | IKEDA T. Aerodynamic analysis of a blended-wing-body aircraft configuration[D]. Melbourne:RMIT University, 2006:80,100. |
[91] | 廖慧君, 张曙光. 翼身融合布局客机的客舱设计[J]. 北京航空航天大学学报, 2009, 35(8):986-989. LIAO H J, ZHANG S G. Design of cabin layout for blended wing body passenger transports[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8):986-989(in Chinese). |
[92] | 中国民用航空局. 运输类飞机适航标准:CCAR-25[S]. 北京:中国民用航空局, 1985. Civil Aviation Administration of China. Transport airplane airworthiness criterion:CCAR-25[S]. Beijing:Civil Aviation Administration of China, 1985(in Chinese). |
[93] | NICKOL C L. Silent aircraft initiative concept risk assessment:NASA/TM-2008-215112[R]. Washington, D.C.:NASA Langley Research Center, 2008. |
[94] | LAUGHLIN T, CORMAN J, MAVRIS D. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft:AIAA-2013-1082[R]. Reston, VA:AIAA, 2013. |
[95] | GERN F H. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft:AIAA-2013-1688[R]. Reston, VA:AIAA, 2013. |
[96] | VELICKI A, THRASH P, JEGLEY D. Airframe development for the hybrid wing body aircraft:AIAA-2009-0932[R]. Reston, VA:AIAA, 2009. |
[97] | MUKHOPADHYAY V. Structural concepts study of non-circular fuselage configurations:AIAA-1996-WAC-67[R]. Washington, D.C.:NASA Langley Research Center, 1996. |
[98] | MUKHOPADHYAY V. Blended wing body (BWB) fuselage structural design for weight reduction:AIAA-2005-2349[R]. Reston, VA:AIAA, 2005. |
[99] | JEGLEY D C, VELICKI A. Development of the PRSEUS multi-bay pressure box for a hybrid wing body vehicle:AIAA-2015-1871[R]. Reston, VA:AIAA, 2015. |
[100] | VELICKI A, THRASH P. Advanced structural concept development using stitched composites:AIAA-2008-2329[R]. Reston, VA:AIAA, 2008. |
[101] | SCHMIDT K, VOS R. A semi-analytical weight estimation method for oval fuselages in conventional and novel aircraft:AIAA-2014-0026[R]. Reston, VA:AIAA, 2014. |
[102] | HOWE D. Blended wing body airframe mass prediction[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2001, 215(6):319-331. |
[103] | GILES G. Equivalent plate modeling for conceptual design of aircraft wing structures[C]//Aircraft Engineering, Technology, and Operations Congress, 1995:3945. |
[104] | KIMMEL W M, BRADLEY K R. A sizing methodology for the conceptual design of blended-wing-body transports:NASA/CR-2004-213016[R].Washington, D.C.:NASA Langley Research Center, 2004. |
[105] | GERN F. Finite element based BWB centerbody structural optimization and weight prediction:AIAA-2012-1606[R]. Reston, VA:AIAA, 2012. |
[106] | GERN F H. Update on HCDstruct-a tool for hybrid wing body conceptual design and structural optimization:AIAA-2015-2544[R]. Reston, VA:AIAA, 2015. |
[107] | VELICKI A, THRASH P. Blended wing body structural concept development[J]. The Aeronautical Journal, 2010, 114(1158):513-519. |
[108] | HUIJTS C, VOSKUIJL M. The impact of control allocation on trim drag of blended wing body aircraft[J]. Aerospace Science and Technology, 2015, 46:72-81. |
[109] | WATERS S M, VOSKUIJL M, VELDHUIS L L M, et al. Control allocation performance for blended wing body aircraft and its impact on control surface design[J]. Aerospace Science and Technology, 2013, 29(1):18-27. |
[110] | GARMENDIA D C, CHAKRABORTY I, MAVRIS D N. Multidisciplinary approach to assessing actuation power of a hybrid wing-body[J]. Journal of Aircraft, 2016, 53(4):900-913. |
[111] | GARMENDIA D C, CHAKRABORTY I, MAVRIS D N. Method for evaluating electrically actuated hybrid wing-body control surface layouts[J]. Journal of Aircraft, 2015, 52(6):1780-1790. |
[112] | JENSEN S C, JENNEY G D, DAWSON D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft[C]//Digital Avionics Systems Conference, 2000. |
[113] | KULSHRESHTHA A, CHARRIER J. Electric actuation for flight and engine control:Evolution and challenges[C]//SAE-ACGSC Meeting, 2007. |
[114] | QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6):321-343. |
[115] | 沈冬, 张彬乾, 陈迎春. 基于改进直接曲率法的一种气动反设计方法研究[J]. 西北工业大学学报, 2011, 29(4):529-535. SHEN D, ZHANG B Q, CHEN Y C. An improved direct iterative surface curvature (DISC) method for aerodynamic inverse design[J]. Journal of Northwestern Polytechnical University, 2011, 29(4):529-535(in Chinese). |
[116] | QIN N,VAVALLE A,LE MOIGNE A, et al. Aerodynamic studies of blended wing body aircraft:AIAA-2002-5448[R]. Reston, VA:AIAA, 2002. |
[117] | QIN N,VAVALLE A,LE MOIGNE A. Spanwise lift distribution for blended wing body aircraft[J]. Journal of Aircraft, 2005, 42(2):356-365. |
[118] | 林宇. 翼身融合布局亚音速飞机概念设计方法研究[D]. 西安:西北工业大学, 2011. LIN Y. Research on the conceptual design method of blended wing body layout subsonic aircraft[D]. Xi'an:Northwestern Polytechnical University, 2011(in Chinese). |
[119] | SARGEANT M A, HYNES T P, GRAHAM W R, et al. Stability of hybrid-wing-body-type aircraft with centerbody leading-edge carving[J]. Journal of Aircraft, 2010, 47(3):970-974. |
[120] | MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations:AIAA-2002-2931[R]. Reston, VA:AIAA, 2002. |
[121] | RAYMER D P. Aircraft design:A conceptual approach, AIAA education series[M]. Reston, VA:AIAA, 1989:84-92. |
[122] | RAHMAN N U. Propulsion and flight controls integration for the blended wing body aircraft[D]. Bedford:Cranfield University, 2009. |
[123] | HILEMAN J, REYNOLDS T, LAW T, et al. Development of approach procedures for silent aircraft:AIAA-2007-451[R]. Reston, VA:AIAA, 2007. |
[124] | PAULUS D, WIRTH C, HORNUNG M. Blended wing body aircraft-recommendations from high lift and control surface design and optimization:AIAA-2013-2908[R]. Reston, VA:AIAA, 2013. |
[125] | PAULUS D, BINDER S, PETERSSON Ö, et al. The integration of an efficient high lift system in the design process of a blended wing body aircraft:AIAA-2012-5650[R]. Reston, VA:AIAA, 2012. |
[126] | HARTWICH P M, DICKEY E D, SCLAFANI A J, et al. AFC-enabled simplified high-lift system integration study:NASA/CR-2014-218521[R]. Washington, D.C.:NASA Langley Research Center, 2014. |
[127] | WILD J. Mach and Reynolds number dependencies of the stall behavior of high-lift wing-sections[J]. Journal of Aircraft, 2013, 50(4):1202-1216. |
[128] | BURNSIDE N J, HORNE W C, ELMER K R, et al. Phased acoustic array measurements of a 5.75% hybrid wing body aircraft[J]. International Journal of Aeroacoustics, 2017, 16(4-5):326-357. |
[129] | BAHR C J, HUTCHESON F V, THOMAS R H, et al. A comparison of the noise characteristics of a conventional slat and krueger flap:AIAA-2016-2961[R], Reston, VA:AIAA, 2016. |
[130] | BURNAZZI M, RADESPIEL R. Design and analysis of a droop nose for coanda flap applications[J]. Journal of Aircraft, 2014, 51(5):1567-1579. |
[131] | KUMAR P, KHALID A. Blended wing body propulsion system design[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2017, 4(4):1-43. |
[132] | SHEA P R, FLAMM J D, LONG K, et al. Turbine powered simulator calibration and testing for hybrid wing body powered airframe integration:AIAA-2016-0011[R]. Reston, VA:AIAA, 2016. |
[133] | FLAMM J D, JAMES K, BONET J T. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) integration for Hybrid Wing Body (HWB):AIAA-2016-0007[R]. Reston, VA:AIAA, 2016. |
[134] | CARTER M B, SHEA P R, FLAMM J D, et al. Experimental evaluation of inlet distortion on an ejector powered hybrid wing body at take-off and landing conditions:AIAA-2016-0010[R]. Reston, VA:AIAA, 2016. |
[135] | GANGOLI R A, SHARMA A, VAN D R. A CFD based parametric analysis of s-shaped inlet for a novel blended wing body aircraft[C]//International Conference on Advances in Thermal Systems, Materials and Design Engineering, 2017. |
[136] | LIOU M F, GRONSTAL D, KIM H J, et al. Aerodynamic design of the hybrid wing body with nacelle:n3-x propulsion-airframe configuration:AIAA-2016-3875[R]. Reston, VA:AIAA, 2016. |
[137] | HATHAWAY M D, DEL ROSARIO R, MADAVAN N. NASA fixed wing project propulsion research and technology development activities to reduce specific energy consumption:AIAA-2013-3605[R]. Reston, VA:AIAA, 2013. |
[138] | YANG Q, ZHENG Y, STREIT T. Aerodynamic design for wing-body blended and inlet[C]//ICAS, 2006. |
[139] | SMITH K N, O'BRIEN W F, LOWE K T. Analysis of duct vortex development with low and high-fidelity models to support StreamVaneTM design:AIAA-2018-1558[R]. Reston, VA:AIAA, 2018. |
[140] | HALL C A, CRICHTON D. Engine and installation configurations for a silent aircraft[J]. American Journal of Human Genetics, 2005, 58(6):1239-1246. |
[141] | HARDIN L W, COUSINS W T, WOLTER J D, et al. Data analysis techniques for fan performance in highly-distorted flows from boundary layer ingesting inlets:AIAA-2018-1888[R]. Reston, VA:AIAA, 2018. |
[142] | KIM H, LIOU M S. Shape design optimization of embedded engine inlets for N2B hybrid wing-body configuration[J]. Aerospace Science and Technology, 2013, 30(1):128-149. |
[143] | FLOREA R V, MATALANIS C, HARDIN L W, et al. Parametric analysis and design for embedded engine inlets[J]. Journal of Propulsion and Power, 2015, 31(3):843-850. |
[144] | KIM H, LIOU M S. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674. |
[145] | HALL D K, GREITZER E M, TAN C S. Analysis of fan stage conceptual design attributes for boundary layer ingestion[J]. Journal of Turbomachinery, 2017, 139(7):071012. |
[146] | AKAYDIN H D, PANDYA S A. Implementation of a body force model in overflow for propulsor simulations:AIAA-2017-3572[R]. Reston, VA:AIAA, 2017. |
[147] | GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391. |
[148] | LEIFSSON L, KO A, MASON W H, et al. Multidisciplinary design optimization of blended-wing-body transport aircraft with distributed propulsion[J]. Aerospace Science and Technology, 2013, 25(1):16-28. |
[149] | YAN W F, WU J H, ZHANG Y L. Aerodynamic performance of blended wing body aircraft with distributed propulsion[C]//Advanced Materials Research, Trans Tech Publications, 2014, 1016:354-358. |
[150] | BLANCO R, HALL E C, CRICHTON D. Challenges in the silent aircraft engine design:AIAA-2007-0454[R]. Reston, VA:AIAA, 2007. |
[151] | KIM H, LIOU M F, LIOU M S. Mail-slot nacelle shape design for N3-X hybrid wing-body configuration:AIAA-2015-3805[R]. Reston, VA:AIAA, 2015. |
[152] | VAN Z D, NARK D, FERNANDEZ H. Propulsion noise reduction research in the NASA advanced air transport technology project:GRC-E-DAA-TN43850[R]. Cleveland, OH:NASA Glenn Research Center, 2017. |
[153] | KIM H, HARDING D, GRONSTAL D T, et al. Design of the hybrid wing body with nacelle:N3-X propulsion-airframe configuration:GRC-E-DAA-TN32200[R]. Cleveland, OH:NASA Glenn Research Center, 2016. |
[154] | 朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015, 36(2):406-421. ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):406-421(in Chinese). |
[155] | GREENAIR. United States adopts ICAO Chapter 14 noise stringency standard for new aircraft designs[EB/OL]. (2017-10-18)[2019-04-10]. https://www.greenaironline.com/news.php?viewStory=2420. |
[156] | DIEDRICH A, HILEMAN J, TAN D, et al. Multidisciplinary design and optimization of the silent aircraft:AIAA-2006-1323[R]. Reston, VA:AIAA, 2006. |
[157] | GRAHAM W R, HALL C A, VERA MORALES M. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34:36-51. |
[158] | GUO Y P, THOMAS R H, BURLEY C L. On noise assessment for blended wing body aircraft:AIAA-2014-0365[R]. Reston, VA:AIAA, 2014. |
[159] | HALL C A, CRICHTON D. Engine design studies for a silent aircraft[J]. Journal of Turbomachinery, 2007, 129(3):479. |
[160] | HALL C A. Low noise engine design for the silent aircraft initiative[J]. Aeronautical Journal, 2009, 113(1147):599-607. |
[161] | MORRIS P J, MCLAUGHLIN D K, KUO C W. Noise reduction in supersonic jets by nozzle fluidic inserts[J]. Journal of Sound and Vibration, 2013, 332(17):3992-4003. |
[162] | POWERS R W, KUO C W, MCLAUGHLIN D K, et al. Supersonic jet noise reduction by nozzle fluidic inserts with simulated forward flight:AIAA-2014-2474[R]. Reston, VA:AIAA, 2014. |
[163] | SHAH P N, MOBED D D, SPAKOVSZKY Z S. Engine air-brakes for quiet air transport:AIAA-2013-1033[R]. Reston, VA:AIAA, 2013. |
[164] | QUAYLE A, DOWLING A, BABINSKY H, et al. Landing gear for a silent aircraft:AIAA-2007-0231[R]. Reston, VA:AIAA, 2007. |
[165] | SAKALIYSKI K, HILEMAN J, SPAKOVSZKY Z. Aero-acoustics of perforated drag plates for quiet transport aircraft:AIAA-2007-1032[R]. Reston, VA:AIAA, 2007. |
[166] | CRICHTON D, BLANCA E R, HILEMAN J L T. Design and operation for ultra low noise take-off:AIAA-2007-0456[R]. Reston, VA:AIAA, 2007. |
[167] | ANDREOU C, GRAHAM W, SHIN H C. Aeroacoustic comparison of airfoil leading edge high-lift geometries and supports:AIAA-2007-0230[R]. Reston, VA:AIAA, 2007. |
[168] | VICROY D D, DICKEY E D, PRINCEN N, et al. Overview of low-speed aerodynamic tests on a 5.75% scale blended-wing-body twin jet configuration:AIAA-2016-0009[R]. Reston, VA:AIAA, 2016. |
[169] | NGUYEN N, TING E, LEBOFSKY S. Aeroelastic analysis of a flexible wing wind tunnel model with variable camber continuous trailing edge flap design:ARC-E-DAA-TN20181[R]. Moffett Field, CA:NASA Ames Research Center, 2015. |
[170] | TURNER T L, MOORE J B, SU J. Elastomeric structural attachment concepts for aircraft flap noise reduction-challenges and approaches to hyperelastic structural modeling and analysis:NF1676L-16708[R]. Washington, D.C.:NASA Langley Research Center, 2014. |
[171] | HULTGREN L S. Core-noise research:NASA-20150010125[R]. Cleveland, OH:NASA Glenn Research Center, 2015. |
[172] | DOTY M J, BROOKS T F, BURLEY C L, et al. Jet noise shielding provided by a hybrid wing body aircraft:AIAA-2014-2625[R]. Reston, VA:AIAA, 2014. |
[173] | HUTCHESON F V, BROOKS T F, BURLEY C L, et al. Shielding of turbomachinery broadband noise from a hybrid wing body aircraft configuration:AIAA-2014-2624[R]. Reston, VA:AIAA, 2014. |
[174] | CZECH M J, THOMAS R H, ELKOBY R. Propulsion airframe aeroacoustic integration effects for a hybrid wing body aircraft configuration[J]. International Journal of Aeroacoustics 2012, 11(3-4):335-368. |
[175] | 陈大斌, 周家检, 郝璇, 等. 气动噪声风洞试验技术发展概述[J]. 实验流体力学, 2013, 27(1):106-112. CHEN D B, ZHOU J J, HAO X, et al. Review of aeroacoustic measurement techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1):106-112(in Chinese). |
[176] | PEREZ R E, LIU H T, BEHDINAN K. Relaxed static stability aircraft design via longitudinal control-configured multi-disciplinary design optimization methodology[J]. Canadian Aeronautics and Space Journal, 2006, 52(1):1-14. |
[177] | 张帅. 客机总体综合分析与优化及其在技术评估中的应用[D]. 南京:南京航空航天大学,2012. ZHANG S. Integrated analysis and optimization in conceptual design of airliners with applications to technology assessment[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese). |
[1] | 刘柳, 向先宏, 张宇飞, 陈海昕, 魏闯, 朱剑, 杨普. 一种高升阻比非常规翼身融合燕尾气动布局[J]. 航空学报, 2024, 45(6): 629630-629630. |
[2] | 郑云隆, 刘沛清, 屈秋林, 戴佳骅, 田逾. BWB飞机水上迫降运动特性数值研究[J]. 航空学报, 2023, 44(21): 528588-528588. |
[3] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[4] | 周桢尧, 吕飞, 周斌, 杨钊. 自然层流减阻验证方法及验证翼段布局设计[J]. 航空学报, 2022, 43(11): 526751-526751. |
[5] | 付军泉, 史志伟, 耿玺, 朱佳晨, 王力爽, 吴大卫, 潘立军. 基于试验分岔分析的翼身融合飞行器纵向稳定性[J]. 航空学报, 2022, 43(1): 124931-124931. |
[6] | 范周伟, 余雄庆, 王朝, 钟伯文. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021, 42(4): 524353-524353. |
[7] | 刘莉, 曹潇, 张晓辉, 贺云涛. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474-623474. |
[8] | 马东立, 张良, 杨穆清, 夏兴禄, 王少奇. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418-623418. |
[9] | 付军泉, 史志伟, 周梦贝, 吴大卫, 潘立军. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1): 123176-123176. |
[10] | 潘立军, 吴大卫, 谭兆光, 张怡哲, 柴啸, 袁昌盛, 陈迎春. 基于适航符合性的翼身融合布局客机客舱布置设计[J]. 航空学报, 2019, 40(9): 623044-623044. |
[11] | 张明辉, 陈真利, 毛俊, 王刚, 谭兆光, 王龙, 张彬乾. 翼身融合布局民机克鲁格襟翼设计[J]. 航空学报, 2019, 40(9): 623048-623048. |
[12] | 柴啸, 陈迎春, 谭兆光, 陈真利, 司江涛, 李杰, 张彬乾. 翼身融合布局客机总体参数分析与优化[J]. 航空学报, 2019, 40(9): 623042-623042. |
[13] | 王刚, 张明辉, 毛俊, 桑为民, 陈真利, 王龙, 张彬乾. 翼身融合民机扰流板增升技术[J]. 航空学报, 2019, 40(9): 623045-623045. |
[14] | 张明辉, 陈真利, 顾文婷, 李栋, 张帅, 袁昌盛, 王龙, 张彬乾. 翼身融合布局民机高低速协调设计[J]. 航空学报, 2019, 40(9): 623052-623052. |
[15] | 钟园, 陈勇, 陈真利, 谭兆光, 吴大卫, 司江涛. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019, 40(9): 623050-623050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学