收稿日期:
2022-07-18
修回日期:
2022-07-27
接受日期:
2022-08-29
出版日期:
2023-06-25
发布日期:
2022-09-13
通讯作者:
曹传军
E-mail:ccjnuaa@126.com
基金资助:
Chuanjun CAO(), Tianyi LIU, Wei ZHU, Jinchun WANG
Received:
2022-07-18
Revised:
2022-07-27
Accepted:
2022-08-29
Online:
2023-06-25
Published:
2022-09-13
Contact:
Chuanjun CAO
E-mail:ccjnuaa@126.com
Supported by:
摘要:
大型客机无一例外地采用了大涵道比涡扇发动机作为其动力,国际民航市场的蓬勃发展促进了民用大涵道比涡扇发动机技术的飞速提升。作为核心部件的高压压气机具有高效率、高压比、高通流的“三高”特征,美国通用电气(GE)公司和普惠(PW)公司、英国罗·罗(RR)公司的高压压气机设计技术处于国际领先的水平。中国近年来依托2个国家科技重大专项,即“大型飞机重大专项”和“航空发动机及燃气轮机重大专项”开展了民用大涵道比涡扇发动机的研制,在高压压气机设计方面取得了一定的进展。对民用大涵道比涡扇发动机高压压气机的技术特点进行了剖析,评述了当前国内外此领域的技术发展水平、发展趋势,客观地指出国内在该领域面临的技术难点和挑战,期望能借鉴吸收国际先进的设计特征,对中国民用大涵道比涡扇发动机高压压气机领域的技术发展起到一定的启示作用。
中图分类号:
曹传军, 刘天一, 朱伟, 王进春. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报, 2023, 44(12): 27824-027824.
Chuanjun CAO, Tianyi LIU, Wei ZHU, Jinchun WANG. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 27824-027824.
1 | 陈懋章. 风扇/压气机技术发展和对今后工作的建议[J]. 航空动力学报, 2002, 17(1): 1-15. |
CHEN M Z. Development of fan/compressor techniques and suggestions on further researches[J]. Journal of Aerospace Power, 2002, 17(1): 1-15 (in Chinese). | |
2 | 刘大响, 金捷, 彭友梅, 等. 大型飞机发动机的发展现状和关键技术分析[J]. 航空动力学报, 2008, 23(6): 976-980. |
LIU D X, JIN J, PENG Y M, et al. Summarization of development status and key technologies for large airplane engines[J]. Journal of Aerospace Power, 2008, 23(6): 976-980 (in Chinese). | |
3 | 陈光. 大涵道比涡扇发动机的发展[J]. 航空动力, 2019(3): 56-61. |
CHEN G. The development of civil high-bypass turbofans[J]. Aerospace Power, 2019(3): 56-61 (in Chinese). | |
4 | 桂幸民, 滕金芳, 刘宝杰. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014. |
GUI X M, TENG J F, LIU B J. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014 (in Chinese). | |
5 | BIOLLO R, BENINI E. Recent advances in transonic axial compressor aerodynamics[J]. Progress in Aerospace Sciences, 2013, 56: 1-18. |
6 | WENNERSTROM A J. Low aspect ratio axial flow compressors: Why and what it means[J]. Journal of Turbomachinery, 1989, 111(4): 357-365. |
7 | 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2014. |
CHEN G. Structure design and analysis of aero-engine[M]. Beijing: Beihang University Press, 2014 (in Chinese). | |
8 | 钟兢军, 王会社, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望 第一部分 可控扩散叶型的设计与发展[J]. 航空动力学报, 2001, 16(3): 205-211. |
ZHONG J J, WANG H S, WANG Z Q. Development and prospect of controlled diffusion airfoils for multistage compressor Part Ⅰ: Design and development of controlled diffusion airfoils[J]. Journal of Aerospace Power, 2001, 16(3): 205-211 (in Chinese). | |
9 | 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报, 2017, 38(9): 520953. |
CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520953 (in Chinese). | |
10 | 曹传军, 翟志龙. 叶尖间隙对民用大涵道比跨音速压气机性能的影响[J]. 科学技术与工程, 2019, 19(10): 230-236. |
CAO C J, ZHAI Z L. Influence of tip clearance on civil high-bypass-ratio transonic compressor aerodynamic performance[J]. Science Technology and Engineering, 2019, 19(10): 230-236 (in Chinese). | |
11 | 陈光. GE9X的发展与设计特点[J]. 航空动力, 2018(3): 37-40. |
CHEN G. Development and design features of GE9X[J]. Aerospace Power, 2018(3): 37-40 (in Chinese). | |
12 | 索德军, 邹迎春. GE公司民用航空发动机发展战略[J]. 航空发动机, 2019, 45(2): 85-90. |
SUO D J, ZOU Y C. Development strategies of civil aeroengine of GE company[J]. Aeroengine, 2019, 45(2): 85-90 (in Chinese). | |
13 | GE Aviation. GEnx engine family[EB/OL]. [2022-07-18].. |
14 | 陈光. 用于波音787客机的GEnx发动机设计特点[J]. 航空发动机, 2010, 36(1): 1-6. |
CHEN G. Design characteristics of GEnx engine for B787[J]. Aeroengine, 2010, 36(1): 1-6 (in Chinese). | |
15 | 李杰. LEAP-X发动机的创新性技术[J]. 航空科学技术, 2011, 22(4): 12-14. |
LI J. Technology innovations of LEAP-X[J]. Aeronautical Science & Technology, 2011, 22(4): 12-14 (in Chinese). | |
16 | 毛茂华, 黄春峰. 罗·罗公司民用航空发动机技术传承与创新[J]. 燃气涡轮试验与研究, 2017, 30(6): 56-60. |
MAO M H, HUANG C F. The development trends of Rolls-Royce's civil aero-engine technologies[J]. Gas Turbine Experiment and Research, 2017, 30(6): 56-60 (in Chinese). | |
17 | 陈光. 遄达XWB发动机发展与设计特点[J]. 航空发动机, 2015, 41(4): 1-7. |
CHEN G. Development and design featrues of Trent XWB engine[J]. Aeroengine, 2015, 41(4): 1-7 (in Chinese). | |
18 | 王光秋, 杨晓宇. 现代涡轮喷气航空发动机简明手册[M]. 上海: 上海交通大学出版社, 2020. |
WANG G Q, YANG X Y. Handbook of modern turbo-jet aero engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2020 (in Chinese). | |
19 | 杨伟, 徐伟. BR700系列发动机高压压气机设计及结构特征[J]. 燃气涡轮试验与研究, 2014, 27(3): 30-33, 62. |
YANG W, XU W. HPC design and structure features of BR700 series engine[J]. Gas Turbine Experiment and Research, 2014, 27(3): 30-33, 62 (in Chinese). | |
20 | 何龙江, 弓升. 世界三大航空发动机制造商民机动力发展布局研究[J]. 航空动力, 2020(5): 8-12. |
HE L J, GONG S. Research on the development of civil aero engines of the big three[J]. Aerospace Power, 2020(5): 8-12 (in Chinese). | |
21 | 强艳, 邱建, 李游, 等. 压气机放气对核心机起动性能的影响研究[J]. 推进技术, 2021, 42(5): 1023-1030. |
QIANG Y, QIU J, LI Y, et al. Effects of compressor bleed on core engine starting performance[J]. Journal of Propulsion Technology, 2021, 42(5): 1023-1030 (in Chinese). | |
22 | 陈禹田, 姜玉廷, 洪青松, 等. 多级轴流压气机气动设计体系的国内外研究进展[J]. 热能动力工程, 2021, 36(11): 1-12. |
CHEN Y T, JIANG Y T, HONG Q S, et al. Research progress on aerodynamic design systems of multistage axial compressors at home and abroad[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(11): 1-12 (in Chinese). | |
23 | 陈懋章. 中国航空发动机高压压气机发展的几个问题[J]. 航空发动机, 2006, 32(2): 5-11, 37. |
CHEN M Z. Some issues in the research and development of aeroengine HP compressor in China[J]. Aeroengine, 2006, 32(2): 5-11, 37 (in Chinese). | |
24 | 程荣辉. 轴流压气机设计技术的发展[J]. 燃气涡轮试验与研究, 2004, 17(2): 1-8. |
CHENG R H. Development of design technology for axial compressor[J]. Gas Turbine Experiment and Research, 2004, 17(2): 1-8 (in Chinese). | |
25 | 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. |
LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576 (in Chinese). | |
26 | RAZAVI S R, BOROOMAND M. Numerical and performance analysis of one row transonic rotor with sweep and lean angle[J]. Journal of Thermal Science, 2014, 23(5): 438-445. |
27 | WANG Z Y, QU F, WANG Y H, et al. Research on the lean and swept optimization of a single stage axial compressor[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 142-163. |
28 | 张森, 田思宇, 张新民, 等. 叶轮机械叶片弯掠气动技术研究进展[J]. 推进技术, 2021, 42(11): 2417-2431. |
ZHANG S, TIAN S Y, ZHANG X M, et al. Research progress of skew and sweep aerodynamic technology for turbomachinery blades[J]. Journal of Propulsion Technology, 2021, 42(11): 2417-2431 (in Chinese). | |
29 | LI X, CHU W L, WU Y H, et al. Effective end wall profiling rules for a highly loaded compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2016, 230(6): 535-553. |
30 | MOROZ L, GOVORUSHCHENKO Y, PAGUR P, et al. Integrated environment for gas turbine preliminary design[C]∥Proceeding of 10th International Gas Turbine Congress-IGTC. 2011: 1-7. |
31 | SMITH L. Axial compressor aerodesign evolution at general electric[J]. Journal of Turbomachinery, 2002, 124(3): 321-330. |
32 | 程荣辉. 普·惠公司的压气机设计系统[J]. 燃气涡轮试验与研究, 1997, 10(2): 53-59. |
CHENG R H. Compressor design system of PW company[J]. Gas Turbine Experiment and Research, 1997, 10(2): 53-59 (in Chinese). | |
33 | 杜辉, 陈葆实, 胡国荣, 等. 风扇/压气机气动设计系统建设初探[J]. 航空动力学报, 2007, 22(3): 454-459. |
DU H, CHEN B S, HU G R, et al. Preliminary development of fan and compressor aerodynamic design system[J]. Journal of Aerospace Power, 2007, 22(3): 454-459 (in Chinese). | |
34 | 王永明, 卫刚, 兰发祥, 等. 航空发动机设计体系的建设与发展[J]. 燃气涡轮试验与研究, 2007, 20(3): 1-7. |
WANG Y M, WEI G, LAN F X, et al. Constructing and developing of aeroengine design system[J]. Gas Turbine Experiment and Research, 2007, 20(3): 1-7 (in Chinese). | |
35 | NING F F. MAP: A CFD package for turbomachinery flow simulation and aerodynamic design optimization: GT2014-26515[R]. New York: ASME, 2014. |
36 | 李佳丽, 梁德旺. 跨声速轴流压气机三维黏性流场的数值模拟[J]. 航空发动机, 2005, 31(3): 13-16. |
LI J L, LIANG D W. Numerical simulation of 3D inter-row viscous flow field in transonic axial-flow compressor[J]. Aeroengine, 2005, 31(3): 13-16 (in Chinese). | |
37 | RALF B, STEFAN D, ANTHONY R, et al. LEMCOTEC―Improving the core-engine thermal efficiency: GT2014-25040[R]. New York: ASME, 2014. |
38 | MCGLUMPHY J, NG W F, WELLBORN S R,et al. Numerical investigation of tandem airfoils for subsonic axial-flow compressor blades[J]. Journal of Turbomachinery, 2009, 131(2): 021018. |
39 | HOEGER M, BAIER R D, FISCHER S, et al. High turning compressor tandem cascade for high subsonic flows, Part 1: Aerodynamic design: AIAA-2011-5601[R]. Reston: AIAA, 2011. |
40 | ESHRAGHI H, BOROOMAND M, TOUSI A M. Design and analysis of a highly loaded tandem compressor stage: IMECE2014-39750[R]. New York: ASME, 2014. |
41 | 刘宝杰, 于贤君, 安广丰, 等. 串列叶片气动设计及优化[J]. 航空发动机, 2021, 47(4): 37-50. |
LIU B J, YU X J, AN G F, et al. Aerodynamic design and optimization of tandem blades[J]. Aeroengine, 2021, 47(4): 37-50 (in Chinese). | |
42 | WENNERSTROM A, FROST G R. Design of a rotor incorporating splitter vanes for a high pressure ratio supersonic axial compressor stage: ARL-TR-74-0110[R]. 1974. |
43 | 张永新, 邹正平, 严明, 等. 单级大小叶片轴流压气机流动分析[J]. 航空动力学报, 2004, 19(1): 89-93. |
ZHANG Y X, ZOU Z P, YAN M, et al. Flow analysis of a single-stage axial flow compressor with splitter rotor[J]. Journal of Aerospace Power, 2004, 19(1): 89-93 (in Chinese). | |
44 | 王洪伟, 蒋浩康, 陈懋章. 大小叶片压气机平面叶栅试验研究[J]. 工程热物理学报, 2006, 27(S1): 113-116. |
WANG H W, JIANG H K, CHEN M Z. Experimental investigation of splitter compressors in a planar cascade[J]. Journal of Engineering Thermophysics, 2006, 27(S1): 113-116 (in Chinese). | |
45 | OSBORN W M, LEWIS G, HEIDELBERG L J. Effect of several porous casing treatments on stall limit and on overall performance of an axial flow compressor rotor: NASA-TN-D-6537[R]. Washington, D.C.: NASA, 1971. |
46 | BAILEY E E. Effect of grooved casing treatment on the flow range capability of a single-stage axial-flow compressor: NASA-TM-X-2459[R]. Washington, D.C.: NASA, 1972. |
47 | 邓敬亮, 楚武利, 张皓光. 轴流转子梯形周向槽处理机匣的扩稳分析[J]. 航空动力学报, 2015, 30(7): 1721-1730. |
DENG J L, CHU W L, ZHANG H G. Stabilizing analysis of trapezoidal circumferential grooves on an axial rotor[J]. Journal of Aerospace Power, 2015, 30(7): 1721-1730 (in Chinese). | |
48 | HOUGHTON T, DAY I. Enhancing the stability of subsonic compressors using casing grooves[J]. Journal of Turbomachinery, 2011, 133(2): 021007. |
49 | HOUGHTON T, DAY I. Stability enhancement by casing grooves: The importance of stall inception mechanism and solidity[J]. Journal of Turbomachinery, 2012, 134(2): 021003. |
50 | CEVIK M, DUC VO H, YU H. Casing treatment for desensitization of compressor performance and stability to tip clearance[J]. Journal of Turbomachinery, 2016, 138(12): 121008. |
51 | DU J, LIU J C, GAO L P, et al. The impact of casing groove location on stall margin and tip clearance flow in a low-speed axial compressor[J]. Journal of Turbomachinery, 2016, 138(12): 121007. |
52 | SAKUMA Y, WATANABE T, HIMENO T, et al. Numerical analysis of flow in a transonic compressor with a single circumferential casing groove: Influence of groove location and depth on flow instability[J]. Journal of Turbomachinery, 2014, 136(3): 031017. |
53 | KOLEY S S, SARASWAT A, CHEN H, et al. Effect of the axial casing groove geometry on the production and distribution of Reynolds stresses in the tip region of an axial compressor rotor[J]. Journal of Turbomachinery, 2022, 144(9): 091007. |
54 | DEBRUGE L L. The aerodynamic significance of fillet geometry in turbocompressor blade rows[J]. Journal of Engineering for Power, 1980, 102(4): 984-993. |
55 | HOEGER M, BAIER R D, MULLER R, et al. Impact of a fillet on diffusering vane endwall flow structure[C]∥The 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2006. |
56 | 彭学敏, 季路成, 伊卫林, 等. 高负荷压气机叶栅的叶身/端壁融合研究[J]. 工程热物理学报, 2014, 35(2): 242-246. |
PENG X M, JI L C, YI W L, et al. Study on blended blade and endwall technique applied to high-loaded compressor cascades[J]. Journal of Engineering Thermophysics, 2014, 35(2): 242-246 (in Chinese). | |
57 | 田勇, 季路成, 李伟伟, 等. 叶身/端壁融合技术工况的适用性[J]. 航空动力学报, 2013, 28(8): 1905-1913. |
TIAN Y, JI L C, LI W W, et al. Applicability of blended blade and endwall under different operating conditions[J]. Journal of Aerospace Power, 2013, 28(8): 1905-1913 (in Chinese). | |
58 | 吴艳辉, 王博, 付裕, 等. 轴流压气机角区分离的研究进展[J]. 航空学报, 2017, 38(9): 520974. |
WU Y H, WANG B, FU Y, et al. Research progress of corner separation in axial-flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520974 (in Chinese). | |
59 | 张健, 杜娟, 陈泽, 等. 高负荷压气机叶栅流动分离的主动控制方法综述[J]. 工程热物理学报, 2022, 43(5): 1190-1202. |
ZHANG J, DU J, CHEN Z, et al. Active flow control concepts of secondary flow on a highly loaded compressor cascade[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1190-1202 (in Chinese). | |
60 | KERREBROCK J L, REIJNEN D P, ZIMINSKY W S, et al. Aspirated compressors: GT-97-525[R]. New York: ASME, 1997. |
61 | KERREBROCK J L, DRELA M, MERCHANT A A, et al. A family of designs for aspirated compressors: GT98-196[R]. New York: ASME, 1998. |
62 | MERCHANT A, DRELA M, KERREBROCK J, et al. Aerodynamic design and analysis of a high pressure ratio aspirated compressor stage: GT2000-0619[R]. New York: ASME, 2000. |
63 | MERCHANT A, KERREBROCK J L, ADAMCZYK J J, et al. Experimental investigation of a high pressure ratio aspirated fan stage[J]. Journal of Turbomachinery, 2005, 127(1): 43-51. |
64 | SCHULER B J, KERREBROCK J L, MERCHANT A. Experimental investigation of a transonic aspirated compressor[J]. Journal of Turbomachinery, 2005, 127(2): 340-348. |
65 | HUBRICH K, BÖLCS A, OTT P. Boundary layer suction via a slot in a transonic compressor - numerical parameter study and first experiments: GT2004-53758[R]. New York: ASME, 2004. |
66 | 宋彦萍, 陈浮, 赵桂杰, 等. 吸气槽道形状对扩压叶栅性能的影响[J]. 工程热物理学报, 2005, 26(5): 761-763. |
SONG Y P, CHEN F, ZHAO G J, et al. Effects of suction slot geometries on the performance of compressor cascade[J]. Journal of Engineering Thermophysics, 2005, 26(5): 761-763 (in Chinese). | |
67 | SIEMANN J, SEUME J R. Design of an aspirated compressor stator by means of DoE: GT2015-42474 [R]. New York: ASME, 2015. |
68 | KNAPKE R D, TURNER M G, LIST M G, al et,Time accurate simulations of a counter-rotating aspirated compressor: GT2008-50877[R]. New York: ASME, 2008. |
69 | EVANS S, YI J, NOLAN S, et al. Modeling of axial compressor with large tip clearances[J]. Journal of Turbomachinery, 2021, 143(6): 061007. |
70 | CUMPSTY N A. Compressor aerodynamics[M]. Malabar: Krieger Publishing Company, 2004. |
71 | 刘大响, 程荣辉. 世界航空动力技术的现状及发展动向[J]. 北京航空航天大学学报, 2002, 28(5): 490-496. |
LIU D X, CHENG R H. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5): 490-496 (in Chinese). | |
72 | ESPINAL D, IM H S, ZHA G C. Full-annulus simulation of nonsynchronous blade vibration excitation of an axial compressor[J]. Journal of Turbomachinery, 2018, 140(3): 031008. |
73 | 《高效节能发动机文集》编委会. 高效节能发动机文集 第3分册 风扇、压气机设计与试验[M]. 北京:航空工业出版社,1991. |
Editorial Committee of High-efficiency and Energy-Saving Engine Anthology. High-efficiency and energy-saving engine anthology, Volume 3: Design and test of fan and compressor [M]. Beijing: Aviation Industry Press,1991 (in Chinese). | |
74 | 《航空发动机设计手册》总编委会.航空发动机设计手册 第8分册 压气机[M]. 北京:航空工业出版社, 2006. |
Editorial Committee of Aero-engine Design Manual. Aero-engine design manual, Volume 8: Compressor [M]. Beijing: Aviation Industry Press, 2006 (in Chinese). | |
75 | 江和甫, 蔡毅, 斯永华. 对航空发动机研究和发展规律的认识[J]. 燃气涡轮试验与研究, 2001, 14(3): 7-10. |
JIANG H F, CAI Y, SI Y H. Understanding the law of aero-engine research and development[J]. Gas Turbine Experiment and Research, 2001, 14(3): 7-10 (in Chinese). | |
76 | 王育鹏, 田文朋, 宋鹏飞, 等. 民机全机疲劳试验综合加速技术研究与验证[J]. 航空学报, 2022, 43(5): 224919. |
WANG Y P, TIAN W P, SONG P F, et al. Research and verification of comprehensive acceleration technology for civil aircraft full-scale fatigue test[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 224919 (in Chinese). | |
77 | 杨俊杰, 郑小梅, 杨兴宇. 影响航空发动机结构寿命的载荷分散系数[J]. 航空学报, 2021, 42(5): 524339. |
YANG J J, ZHENG X M, YANG X Y. Load scatter factors affecting aero engine structure life[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524339 (in Chinese). |
[1] | 王宗辉, 杨云军, 赵弘睿, 王雪晨. 多飞行状态倾转旋翼气动优化设计[J]. 航空学报, 2024, 45(9): 529024-529024. |
[2] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[3] | 周贵荣, 徐见源, 马少博, 宗军耀, 沈金清, 朱海杰. 大型客机航电系统综合集成关键技术综述[J]. 航空学报, 2024, 45(5): 529956-529956. |
[4] | 陈立立, 刘建霞, 张俊韬, 郭正, 吴岸平, 侯中喜. 纵向分段多级压缩乘波前体设计方法[J]. 航空学报, 2024, 45(4): 128744-128744. |
[5] | 杨晓飞, 孙太璐, 孟德君, 尹海宝, 王咏梅. 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024, 45(2): 128625-128625. |
[6] | 姜乐, 陈以彪, 李炎军, 李贵林, 刘涛. 航空发动机增压式离心通风器流动与分离特性[J]. 航空学报, 2024, 45(2): 128675-128675. |
[7] | 张庆才, 刘松, 王钦钦, 谭晓茗, 张靖周, 郭文. 带缘板修型的静盘深腔型复合封严试验[J]. 航空学报, 2023, 44(5): 126719-126719. |
[8] | 刘中臣, 钱战森, 李雪飞, 冷岩, 郭大鹏. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2): 626952-626952. |
[9] | 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973-626973. |
[10] | 黄雄, 曲仕茹, 张恒, 陈显调. 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023, 44(1): 627077-627077. |
[11] | 马乙楗, 柴得林, 王强, 易贤, 孔满昭. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 627817-627817. |
[12] | 张宝振, 王汉平, 徐峰, 吴志青. VSV调节机构的仿真提速和精度补偿措施[J]. 航空学报, 2022, 43(9): 226034-226034. |
[13] | 曹明, 黄金泉, 周健, 陈雪峰, 鲁峰, 魏芳. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573-625573. |
[14] | 林阿强, 刘高文, 吴衡, 畅然, 冯青. 燃气涡轮发动机预旋系统压比和熵增的作用机制与理论分析[J]. 航空学报, 2022, 43(9): 125907-125907. |
[15] | 孙启翔, 王万波, 黄勇. 吸气-振荡射流激励器振荡特性[J]. 航空学报, 2022, 43(8): 125627-125627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学