航空学报 > 2022, Vol. 43 Issue (9): 625573-625573   doi: 10.7527/S1000-6893.2021.25573

民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测

曹明1,2, 黄金泉3, 周健1, 陈雪峰4, 鲁峰3, 魏芳1   

  1. 1. 中国航发商用航空发动机有限责任公司, 上海 201109;
    2. 上海交通大学 航空航天学院, 上海 200240;
    3. 南京航空航天大学 能源与动力学院, 南京 210016;
    4. 西安交通大学 机械工程学院, 西安 710049
  • 收稿日期:2021-03-26 修回日期:2021-04-12 出版日期:2022-09-15 发布日期:2021-08-25
  • 通讯作者: 曹明,E-mail:fanfeilong369@126.com E-mail:fanfeilong369@126.com
  • 基金资助:
    国家科技重大专项(2017-Ⅳ-0008-0045)

Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: Diagnosis and prognosis of engine gas path, mechanical and FADEC

CAO Ming1,2, HUANG Jinquan3, ZHOU Jian1, CHEN Xuefeng4, LU Feng3, WEI Fang1   

  1. 1. AECC Commercial Aircraft Engine Co., Ltd, Shanghai 201109, China;
    2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. School of Energy & Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2021-03-26 Revised:2021-04-12 Online:2022-09-15 Published:2021-08-25
  • Supported by:
    National Science and Technology Major Project (2017-Ⅳ-0008-0045)

摘要: 最近这一二十年相关工程技术的发展, 给民用航空发动机故障诊断与健康管理(EHM)系统研发提出了新的挑战和机遇。本文综述围绕EHM偏上游功能的民用发动机气路性能退化诊断和预测、发动机机械系统故障和发动机FADEC系统故障诊断与3个模块的设计验证技术的需求、必要性及现状进行了讨论, 并指出了未来的主要研发方向。全文的讨论围绕以下关键技术发展趋势展开: 基于非线性无迹卡尔曼滤波器(UKF)和深度学习神经网络的发动机气路故障诊断算法己经显示出提高气路诊断精度的潜力; 复合材料叶片在涡扇发动机里己经得到广泛使用; 增材制造技术正被越来越多地应用于复杂发动机零部件的制造; 金属屑末传感器的精度已获得大幅提高, 其技术成熟度己达到发动机使用要求, 为与振动信号的融合诊断铺平了道路; 电气化、智能化的发动机全权限数字控制系统(FADEC)发展趋势对现有的基于传统构型控制部件和集中式控制架构的故障诊断算法也提出了新的挑战。

关键词: 涡扇发动机, 发动机健康管理系统, 气路故障诊断与预测, 发动机机械故障诊断与预测, FADEC诊断与预测

Abstract: The engineering advancements during the last two decades have presented opportunities as well as challenges for the Engine Health Management (EHM) system development of civil aero-engines. This R&D review provides an in-depth discussion on EHM needs, gaps and potential solutions/future R&D development directions, focusing on the "up-stream" EHM development modules: Engine gas path diagnostics and prognostics, mechanical diagnostics and prognostics, FADEC diagnostics and prognostics. Results shows the Unscented Kalman Filter (UKF) method and deep-learning neural networks have shown promises on improving the engine gas path diagnostics accuracy; composite fans have found widespread applications in turbo-fan engines; powder metallurgy has seen more and more applications on fabricating aero-engine parts with complex shapes; the accuracies of metal particle sensing technologies have witnessed significant improvements, with technology readiness level matching the aero-engine needs, and paved the way for fusion diagnostics with vibration signal. The result also show that electrification and intelligentization trends of FADEC system presents new challenges for the diagnostics of the traditionally centralized control architecture.

Key words: turbofan engine, Engine Health Management (EHM) system, gas path diagnostics and prognostics, engine mechanical diagnostics and prognostics, FADEC diagnostics and prognostics

中图分类号: