[1] YANG J J, ZHENG X M, YANG X Y. Load scatter factors affecting aero engine structure life[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524339 (in Chinese). 杨俊杰, 郑小梅, 杨兴宇. 影响航空发动机结构寿命的载荷分散系数[J]. 航空学报, 2021, 42(5): 524339. [2] LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 024111 (in Chinese). 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 024111. [3] WEI H Y, XU M, LIU X X. Development and key technologies of turbine blade cooling technology[J]. Aerodynamic Missile Journal, 2012(2): 61-64 (in Chinese). 卫海洋, 徐敏, 刘晓曦. 涡轮叶片冷却技术的发展及关键技术[J]. 飞航导弹, 2012(2): 61-64. [4] ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix composite components: review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024126 (in Chinese). 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6): 024126. [5] LIN A Q, LIU G W, WANG X X, et al. Comprehensive evaluations on performance and energy consumption of pre-swirl rotor-stator system in gas turbine engines[J]. Energy Conversion and Management, 2021, 244: 114440. [6] LIU S L, TAO Z. Heat transfer and secondary air system of gas turbine engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 727-735 (in Chinese). 刘松龄, 陶智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018: 727-735. [7] LIN L. Research on the mechanism of flow and heat transfer in rotor-stator cavities in gas turbine[D]. Beijing: Tsinghua University, 2013: 26-39 (in Chinese). 林立. 燃气轮机转静系盘腔内流动与传热机理研究[D]. 北京: 清华大学, 2013: 26-39. [8] MEIERHOFER B, FRANKLIN C J. An investigation of a preswirled cooling airflow to a turbine disc by measuring the air temperature in the rotating channels: 81-GT-132[R]. New York: ASME, 1981. [9] SMOUT P D, CHEW J W, CHILDS P R N. ICAS-GT: A European collaborative research programme on internal cooling air systems for gas turbines[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2002: 907-914. [10] CHILDS P, DULLENKOPF K, BOHN D. Internal air systems experimental rig best practice[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 1333-1343. [11] EL-OUN Z B, OWEN J M. Preswirl blade-cooling effectiveness in an adiabatic rotor-stator system[J]. Journal of Turbomachinery, 1989, 111(4): 522-529. [12] ALEXIOU A, MATHIOUDAKIS K. Secondary air system component modeling for engine performance simulations: GT 2008-50771[R]. New York: ASME, 2008. [13] LIU G W, LI B Y, JIANG Z W, et al. Effects of pre-swirl angle on flow characteristics of pre-swirl nozzle[J]. Journal of Propulsion Technology, 2012, 33(5): 740-746 (in Chinese). 刘高文, 李碧云, 蒋兆午, 等. 预旋角度对预旋孔流动特性的影响[J]. 推进技术, 2012, 33(5): 740-746. [14] LIU G W, ZHANG L, WU W T, et al. Numerical simulations on the flow characteristics of the pre-swirl nozzles with different length-to-diameter ratios[J]. Journal of Propulsion Technology, 2013, 34(5): 644-650 (in Chinese). 刘高文, 张林, 务卫涛, 等. 长径比对预旋孔流动特性影响的数值研究[J]. 推进技术, 2013, 34(5): 644-650. [15] ZHANG F, WANG X J, LI J. Numerical investigation on the flow and heat transfer characteristics in radial pre-swirl system with different fillet radius at the junction of inlet cavity and nozzle[J]. Applied Thermal Engineering, 2016, 106: 1165-1175. [16] CHEN Y, FENG Q. The investigation of the discharge coefficient measurement of different geometrical structural pre-swirl nozzle[J]. Science Technology and Engineering, 2012, 12(11): 2637-2641 (in Chinese). 陈尧, 冯青. 异形预旋喷嘴流量系数的测量研究[J]. 科学技术与工程, 2012, 12(11): 2637-2641. [17] LIU Y X, LIU G W, XU Q, et al. Effects of non-dimensional blade height on flow characteristics of cascade vane preswirl nozzle[J]. Journal of Propulsion Technology, 2015, 36(3): 392-398 (in Chinese). 刘育心, 刘高文, 徐权, 等. 无量纲叶高对叶型喷嘴流动特性的影响[J]. 推进技术, 2015, 36(3): 392-398. [18] LIU Y X, LIU G W, WU H, et al. Numerical investigation on flow characteristics of a vane shaped hole preswirl nozzle[J]. Journal of Propulsion Technology, 2016, 37(2): 332-338 (in Chinese). 刘育心, 刘高文, 吴衡, 等. 叶型孔式预旋喷嘴流动特性数值研究[J]. 推进技术, 2016, 37(2): 332-338. [19] HU W X, WANG S F, MAO S S. Numerical study on influence of pre-swirl nozzle radial angles on pre-swirl characteristic[J]. Journal of Aerospace Power, 2019, 34(1): 84-91 (in Chinese). 胡伟学, 王锁芳, 毛莎莎. 预旋喷嘴径向角度对预旋特性影响的数值研究[J]. 航空动力学报, 2019, 34(1): 84-91. [20] TANG G Q, XUE W P, ZENG J, et al. Design and study of low loss integrated pre-swirl nozzle[J]. Journal of Propulsion Technology, 2020, 41(9): 2011-2020 (in Chinese). 唐国庆, 薛伟鹏, 曾军, 等. 低损失融合式预旋喷嘴设计与研究[J]. 推进技术, 2020, 41(9): 2011-2020. [21] LEI Z, LIU G W, GU W, et al. Numerical simulation of effects of partial nozzle closure on uniformity of parameters in pre-swirl air supply system[J]. Journal of Aerospace Power, 2020, 35(5): 963-972 (in Chinese). 雷昭, 刘高文, 顾伟, 等. 部分喷嘴关闭对预旋供气系统参数均匀性影响的计算[J]. 航空动力学报, 2020, 35(5): 963-972. [22] BRICAUD C, GEIS T, DULLENKOPF K, et al. Measurement and analysis of aerodynamic and thermodynamic losses in pre-swirl system arrangements[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 1115-1126. [23] MIRZAMOGHADAM A V, RIAHI A, MORRIS M C. High pressure turbine low radius radial TOBI discharge coefficient validation process[J]. Journal of Fluids Engineering, 2013, 135(7): 071103. [24] JAVIYA U, CHEW J, HILLS N, et al. A comparative study of cascade vanes and drilled nozzle design for pre-swirl[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 913-920. [25] CHAI J S, YANG Y S. Calculation methods of pre-swirl nozzle based on cascade vanes[J]. Aeroengine, 2013, 39(2): 66-69, 83 (in Chinese). 柴军生, 杨燕生. 基于叶栅型预旋喷嘴的计算方法[J]. 航空发动机, 2013, 39(2): 66-69, 83. [26] LIU Y X, LIU G W, KONG X Z, et al. Design and numerical analysis of a vane shaped receiver hole in a cover-plate preswirl system[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4): 041001. [27] XUE B. Investigations on the temperature drop and pressure loss of a new preswirl system[D]. Xi 'an: Northwestern Polytechnical University, 2011 (in Chinese). 薛彪. 新型预旋供气系统温降和阻力特性研究[D]. 西安: 西北工业大学, 2011. [28] CHEN Y. The investigation of the discharge coefficient and the flow field measurement of pre-swirl nozzles with special geometry[D]. Xi 'an: Northwestern Polytechnical University, 2012 (in Chinese). 陈尧. 异形预旋喷嘴的流量系数和流场的测量研究[D]. 西安: 西北工业大学, 2012. [29] POPP O, ZIMMERMANN H, KUTZ J. CFD analysis of coverplate receiver flow[J]. Journal of Turbomachinery, 1998, 120(1): 43-49. [30] DITTMANN M, GEIS T, SCHRAMM V, et al. Discharge coefficients of a preswirl system in secondary air systems[J]. Journal of Turbomachinery, 2002, 124(1): 119-124. [31] DITTMANN M, DULLENKOPF K, WITTIG S. Discharge coefficients of rotating short orifices with radiused and chamfered inlets[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(4): 803-808. [32] YAN Y Y, GORD M F, LOCK G D, et al. Fluid dynamics of a pre-swirl rotor-stator system[J]. Journal of Turbomachinery, 2003, 125(4): 641-647. [33] FENG Q, BU Q L, LIU S L. Similarity analysis and numerical simulation of the flow field in a rotating disk system with rotating pre-swirl nozzle[J]. Journal of Northwestern Polytechnical University, 2003, 21(2): 239-243 (in Chinese). 冯青, 卜其龙, 刘松龄. 动盘带预旋喷嘴的旋转盘腔内流场的相似分析与数值模拟[J]. 西北工业大学学报, 2003, 21(2): 239-243. [34] FENG Q, ZHOU B, LIU S L. Similarity analysis and numerical solution of N-S equations for laminar flow in a rotor-stator system[J]. Journal of Aerospace Power, 1994, 9(4): 366-370 (in Chinese). 冯青, 周彬, 刘松龄. 转盘-静盘腔内层流流动的相似分析及其N-S方程数值解[J]. 航空动力学报, 1994, 9(4): 366-370. [35] WANG S F, ZHU Q H, LUAN H F, et al. Experimental study on heat transfer in rotor-stator cavity with high-positioned pre-swirl inflow[J]. Journal of Aerospace Power, 2007, 22(8): 1216-1221 (in Chinese). 王锁芳, 朱强华, 栾海峰, 等. 高位预旋进气转静盘腔换热实验[J]. 航空动力学报, 2007, 22(8): 1216-1221. [36] WU H, FENG Q, LIU G W, et al. Entropy analysis of a cover-plate pre-swirl system[J]. Journal of Propulsion Technology, 2016, 37(11): 2048-2054 (in Chinese). 吴衡, 冯青, 刘高文, 等. 熵分析法在盖板式预旋系统分析中的应用[J]. 推进技术, 2016, 37(11): 2048-2054. [37] WU H. Numerical research on the power consumption and temperature drop of a pre-swirl system[D]. Xi 'an: Northwestern Polytechnical University, 2016 (in Chinese). 吴衡. 预旋系统温降及功耗特性的数值研究[D]. 西安: 西北工业大学, 2016. [38] GONG W B, LIU G W, FENG Q, et al. Flow rate and entropy generation model of typical flow resistance elements[J]. Journal of Propulsion Technology, 2021, 42(8): 1807-1814 (in Chinese). 龚文彬, 刘高文, 冯青, 等. 典型流阻元件的流量和熵产模型研究[J]. 推进技术, 2021, 42(8): 1807-1814. [39] DING S T, DENG C C, QIU T. Sensibility analysis of heat transfer characteristics to dimensionless criterion in central inlet rotating disk cavity[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123017 (in Chinese). 丁水汀, 邓长春, 邱天. 中心进气旋转盘腔换热特性对无量纲参数的敏感性分析[J]. 航空学报, 2019, 40(12): 123017. [40] LIU G W, WANG X X, GONG W B, et al. Prediction of the sealing flow effect on the temperature drop characteristics of a pre-swirl system in an aero-engine[J]. Applied Thermal Engineering, 2021, 189: 116717. [41] LIU G W, GONG W B, WU H, et al. Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 476-489. [42] LIU G W, GONG W B, WU H, et al. Theoretical and experimental evaluation of temperature drop and power consumption in a cover-plate pre-swirl system for gas turbine cooling[J]. Case Studies in Thermal Engineering, 2021, 27: 101221. [43] LEI Z, LIU G W. Numerical analysis of air supply parameters and non-uniform characteristics in a cover-plate pre-swirl system with the adjustable flow path[J]. International Journal of Energy Research, 2021, 45(6): 8763-8779. [44] LIN A Q, ZHAO Y Z, WANG J S, et al. Mechanism and theoretical analysis of temperature drop and power consumption in a pre-swirl system of gas turbine engine[J]. Proceedings of the Chinese Society of Electrical Engineering, 2022, 42(11): 4090-4102 (in Chinese). 林阿强, 赵义祯, 王俊凇, 等. 燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J]. 中国电机工程学报, 2022, 42(11): 4090-4102. [45] XIE L, DU Q, LIU G, et al. Flow characteristics in turbine wheel space cavity[J]. Energy Reports, 2021, 7: 2262-2275. [46] Rolls-Royce PLC. The jet engine[M]. London: Rolls Royce Technical Publication, 1996. [47] KARABAY H, CHEN J X, PILBROW R, et al. Flow in a "cover-plate" preswirl rotor-stator system[J]. Journal of Turbomachinery, 1999, 121(1): 160-166. [48] GONG W B, LIU G W, WANG F, et al. Experimental study on the influence of vane-shaped receiver holes on flow and temperature drop of a high-radius pre-swirl air supply system[J]. Journal of Xi 'an Jiaotong University, 2021, 55(7): 97-105 (in Chinese). 龚文彬, 刘高文, 王斐, 等. 叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J]. 西安交通大学学报, 2021, 55(7): 97-105. [49] LEWIS P, WILSON M, LOCK G, et al. Effect of radial location of nozzles on performance of pre-swirl systems[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 1397-1406. [50] KAKADE V U, LOCK G D, WILSON M, et al. Effect of radial location of nozzles on heat transfer in preswirl cooling systems[J]. Journal of Turbomachinery, 2011, 133(2): 021023. [51] WU C, VAISMAN B, MCCUSKER K. CFD analyses of HPT blade air delivery system with and without impellers[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 883-892. [52] TIAN S Q, ZHANG Q, LIU H. CFD investigation of vane nozzle and impeller design for HPT blade cooling air delivery system: GT2013-95396[R]. New York: ASME, 2013. [53] GUPTA A K, RAMERTH D, RAMACHANDRAN D. Numerical simulation of TOBI flow: Analysis of the cavity between a seal-plate and HPT disc with pumping vanes[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 1571-1578. [54] LIU G W, WU H, FENG Q, et al. Theoretical and numerical analysis on the temperature drop and power consumption of a pre-swirl system: GT2016-56742[R]. New York: ASME, 2016. |