[1] WANG Y. Aeroengine principle[M]. Beijing: Beihang University Press, 2009: 85-99 (in Chinese). 王云. 航空发动机原理[M]. 北京: 北京航空航天大学出版社, 2009: 85-99. [2] LI S L. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering, 2011, 11(20): 4934-4936, 4940 (in Chinese). 李世林. VSV系统对CFM56发动机喘振的影响分析[J]. 科学技术与工程, 2011, 11(20): 4934-4936, 4940. [3] YANG W, LUO Q S, ZHANG S P, et al. Dynamics simulation of compressor's adjusting mechanism virtual prototyping based on UG & ADAMS[J]. Gas Turbine Experiment and Research, 2009, 22(2): 22-25 (in Chinese). 杨伟, 罗秋生, 张少平, 等. 基于UG和ADAMS的调节机构虚拟样机动力学仿真[J]. 燃气涡轮试验与研究, 2009, 22(2): 22-25. [4] HU M, ZHENG L X. Simulation analysis of single-stage variable stator vane system based on CATIA and ADAMS[J]. Aeronautical Manufacturing Technology, 2014, 57(8): 98-101 (in Chinese). 胡明, 郑龙席. 基于CATIA和ADAMS的单级可调静子叶片系统仿真分析[J]. 航空制造技术, 2014, 57(8): 98-101. [5] LIANG S, YIN X M, WANG H. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine, 2016, 42(1): 65-69 (in Chinese). 梁爽, 印雪梅, 王华. 基于ADAMS的静叶联调机构参数化设计[J]. 航空发动机, 2016, 42(1): 65-69. [6] SUN K, LIN Q S, ZHANG Y S. Kinematic optimization of compressor VSV system based on ADAMS and ISIGHT[C]//7th CSAA Science and Technology Youth Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 370-374 (in Chinese). 孙凯, 林清松, 张屹尚. 基于ADAMS与ISIGHT的压气机VSV调节机构运动学优化设计[C]//第七届中国航空学会青年科技论坛文集. 北京: 中国航空学会, 2016: 370-374. [7] YANG W, XU W. Preliminary application of parameterized analysis based on ADAMS in VSV's adjusting mechanism design of high pressure compressor[J]. Gas Turbine Experiment and Research, 2012, 25(4): 20-24 (in Chinese). 杨伟, 徐伟. ADAMS参数化分析在高压压气机调节机构设计中的初步应用[J]. 燃气涡轮试验与研究, 2012, 25(4): 20-24. [8] HE F, CHEN G Z, WEN Q, et al. Design of the control mechanism for the multistage axial compressor variable vane[J]. Journal of Aerospace Power, 2007, 22(2): 332-336 (in Chinese). 贺飞, 陈国智, 温泉, 等. 涡轴发动机叶片调节机构设计及应用[J]. 航空动力学报, 2007, 22(2): 332-336. [9] YU J P, SUN J M, JI F S, et al. Motion analysis and optimization of jointly adjusting mechanism of aero-engine stator vane[J]. Journal of Aerospace Power, 2019, 34(6): 1193-1200 (in Chinese). 于嘉鹏, 孙加明, 纪福森, 等. 航空发动机静叶联调机构运动分析及优化[J]. 航空动力学报, 2019, 34(6): 1193-1200. [10] TANG Y Y, GUO W Z. Global dimensional optimization for the design of adjusting mechanism of variable stator vanes[J]. Journal of Mechanical Engineering, 2020, 56(11): 26-36 (in Chinese). 唐佑远, 郭为忠. 静叶调节机构尺度全局优化设计方法研究[J]. 机械工程学报, 2020, 56(11): 26-36. [11] YAN X P, YIN Y Q, CAI X, et al. Simulation on the variable vane's angle change due to the eccentricity and deformation of actuator ring for a compressor[C]//The 4th China Aeronautical science and technology conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2019: 521-525 (in Chinese). 闫晓攀, 银越千, 蔡歆, 等. 某压气机联动环偏心、变形对可调导叶角度变化的仿真分析[C]//第四届中国航空科学技术大会. 北京: 中国航空学会, 2019: 521-525. [12] ZHENG Y, ZHONG M Q. Analysis of clearance and number influence of linkage ring brackets on stator vane adjustment accuracy[J]. Gas Turbine Experiment and Research, 2020, 33(5): 20-25 (in Chinese). 郑彦, 钟明桥. 联动环支架间隙和数量对静子叶片调节精度的影响[J]. 燃气涡轮试验与研究, 2020, 33(5): 20-25. [13] ZHA X H, HUANG X M, CHENG S J, et al. Analysis of reliability factor on design of turboshaft engine guide vane adjusting structure[J]. Aviation Precision Manufacturing Technology, 2020, 56(3): 18-21 (in Chinese). 查小晖, 黄晓鸣, 程世君, 等. 涡轴发动机导叶调节结构设计影响因素分析[J]. 航空精密制造技术, 2020, 56(3): 18-21. [14] ZHANGS P, YANG C, ZHANG Y B. Modeling and simulation of the adjusting mechanism of stators through flexible multibody approach[J]. Gas Turbine Experiment and Research, 2018, 31(4): 12-18 (in Chinese). 张少平, 杨川, 张一彬. 压气机静叶调节机构的柔性多体建模及仿真[J]. 燃气涡轮试验与研究, 2018, 31(4): 12-18. [15] ZHANG Z, WANG H P, SUN H R, et al. Attribution analysis of blocking force and adjustment accuracy of adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 423789 (in Chinese). 张哲, 王汉平, 孙浩然, 等. VSV调节机构阻滞力和调节精度的归因分析[J]. 航空学报, 2020, 41(12): 423789. [16] ZHAO Z H, REN G X. A quaternion-based formulation of Euler-Bernoulli beam without singularity[J]. Nonlinear Dynamics, 2012, 67(3): 1825-1835. [17] SHABANA A A. Computational continuum mechanics[M]. 3rd ed. New York: Cambridge University Press, 2012: 167-221. [18] SHABANA A A. Dynamics of multibody systems[M]. New York: Wiley, 1989: 309-342. [19] YU L, ZHAO Z H, REN Q H, et al. Contact simulations of flexible bodies based on absolute nodal coordinates[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(7): 1135-1140 (in Chinese). 虞磊, 赵治华, 任启鸿, 等. 基于绝对节点坐标的柔性体碰撞仿真[J]. 清华大学学报(自然科学版), 2010, 50(7): 1135-1140. [20] CIAVARELLA M, DECUZZI P. The state of stress induced by the plane frictionless cylindrical contact. I. The case of elastic similarity[J]. International Journal of Solids and Structures, 2001, 38(26-27): 4507-4523. [21] CIAVARELLA M, DECUZZI P. The state of stress induced by the plane frictionless cylindrical contact. II. The general case (elastic dissimilarity)[J]. International Journal of Solids and Structures, 2001, 38(26-27): 4525-4533. [22] YAN S Z, XIANG W W K, HUANG T Q. Advances in modeling of clearance joints and dynamics of mechanical systems with clearances[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 741-755 (in Chinese). 阎绍泽, 向吴维凯, 黄铁球. 计及间隙的运动副和机械系统动力学的研究进展[J]. 北京大学学报(自然科学版), 2016, 52(4): 741-755. [23] LI Y T, QUAN Q Q, TANG D W, et al. Modeling and experimental research on a coordinated contact between a shaft and hole[J]. Journal of Harbin Engineering University, 2016, 37(11): 1546-1552 (in Chinese). 李云涛, 全齐全, 唐德威, 等. 轴孔协调接触建模与试验研究[J]. 哈尔滨工程大学学报, 2016, 37(11): 1546-1552. [24] LIU C S, ZHANG K, YANG R. The FEM analysis and approximate model for cylindrical joints with clearances[J]. Mechanism and Machine Theory, 2007, 42(2): 183-197. [25] HAN L S, LI X Y, YAN D K. Analysis on several mathematical methods of sensitivity analysis[J]. China Water Transport, 2008, 8(4): 177-178 (in Chinese). 韩林山, 李向阳, 严大考. 浅析灵敏度分析的几种数学方法[J]. 中国水运(下半月), 2008, 8(4): 177-178. [26] ZHANG Z. Research on the influencing factors of the retarding force and the regulating precision of the adjusting mechanism[D]. Beijing: Beijing Institute of Technology, 2021: 26-39 (in Chinese). 张哲. 调节机构的阻滞力及调节精度影响因素研究[D]. 北京: 北京理工大学, 2021: 26-39. |