航空学报 > 2022, Vol. 43 Issue (S2): 76-88

基于高温真实气体效应的双锥磁流体流动控制

罗凯1, 汪球1(), 李进平1, 赵伟1,2   

  1. 1.中国科学院 力学研究所 高温气体动力学国家重点实验室,北京 100190
    2.中国科学院大学 工程科学学院,北京 100049
  • 收稿日期:2022-06-30 修回日期:2022-07-27 接受日期:2022-08-17 出版日期:2022-12-25 发布日期:2022-09-01
  • 通讯作者: 汪球 E-mail:wangqiu@imech.ac.cn
  • 基金资助:
    国家自然科学基金(12072352);中国科学院青年创新促进会项目(2021020)

Magnetohydrodynamic flow control of double-cone under high temperature real gas effect

Kai LUO1, Qiu WANG1(), Jinping LI1, Wei ZHAO1,2   

  1. 1.State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2022-06-30 Revised:2022-07-27 Accepted:2022-08-17 Online:2022-12-25 Published:2022-09-01
  • Contact: Qiu WANG E-mail:wangqiu@imech.ac.cn
  • Supported by:
    National Natural Science Foundation of China(12072352);The Fundation of Youth Innovation Promotion Association, CAS(2021020)

摘要:

磁流体流动控制作为一种主动流动控制技术,通过外加磁场影响强激波后的等离子体流场运动,可有效改善高超声速飞行器的气动性能。通过数值模拟方法研究不同磁感应强度、磁体位置对双锥模型绕流流动结构及流场内关键参数分布的影响机理和规律。结果表明偶极子磁场下随磁感应强度增加,逆流向洛伦兹力始终主导流场内的三波点位置、分离区大小及壁面热流和压力的峰值状态,同时洛伦兹力的存在还将改变激波后电子密度分布;磁体位置前移时,洛伦兹力的分量及峰值位置的变化会导致其对分离激波的作用加强,这有利于进一步控制分离区结构及壁面热流和压力的分布。

关键词: 磁流体, 流动控制, 双锥流动, 高温真实气体效应, 洛伦兹力

Abstract:

As an active flow control technique, magnetohydrodynamic flow control can effectively improve the aerodynamic performance of hypersonic vehicles by influencing the motion of the plasma flow field after strong excitation through an applied magnetic field. In this paper, the influence of different magnetic induction intensity and magnet positions on the flow structure and distribution of key parameters in the double-cone model are studied by numerical simulation. The results show that the countercurrent Lorentz force always dominates the position of the three wave points, the size of the separation region and the peak value of wall heat flux and pressure in the flow field with the increase of magnetic induction intensity. Meanwhile, the existence of Lorentz force will also change the electron density distribution behind the shock wave. In addition, when the magnet position moves forward, the change of the component and peak position of Lorentz force will strengthen the effect on the separation shock wave, which is conducive to further control the structure of the separation region and the distribution of wall heat flux and pressure.

Key words: magnetohydrodynamic, flow control, double-cone flow, high temperature gas effect, Lorentz force

中图分类号: