航空学报 > 2022, Vol. 43 Issue (S2): 54-66

多级环量控制技术增升机理及能效分析

杜海1,2(), 杨乐杰1, 李铮3, 徐悦4, 孙京阳3, 王宇航4   

  1. 1.西华大学 流体及动力机械教育部重点实验室,成都 610039
    2.西北工业大学 翼型叶栅空气动力学国家级重点实验室,西安 710072
    3.中国运载火箭技术研究院 空间物理实验室,北京 100076
    4.中国航空研究院,北京 100012
  • 收稿日期:2022-06-30 修回日期:2022-07-28 接受日期:2022-08-08 出版日期:2022-12-25 发布日期:2022-08-18
  • 通讯作者: 杜海 E-mail:duhai@mail.xhu.edu.cn
  • 基金资助:
    国家自然科学基金(51806181);翼型、叶栅空气动力学重点实验室基金(614220121030205)

Lifting mechanism and energy efficiency analysis of multistage circulation control technology

Hai DU1,2(), Lejie YANG1, Zheng LI3, Yue XU4, Jingyang SUN3, Yuhang WANG4   

  1. 1.Key Laboratory of Fluid and Power Machinery of Ministry of Education,Xihua University,Chengdu 610039,China
    2.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwest Polytechnical University,Xi’an 710072,China
    3.Laboratory of Science and Technology on Space Physics,China Academy of Launch Vehicle Technology,Beijing 100076,China
    4.Chinese Aeronautical Establishment,Beijing 100012,China
  • Received:2022-06-30 Revised:2022-07-28 Accepted:2022-08-08 Online:2022-12-25 Published:2022-08-18
  • Contact: Hai DU E-mail:duhai@mail.xhu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51806181);National Key Laboratory of Science and Technology on Aerodynamic Design and Research(614220121030205)

摘要:

针对单级环量控制气动效率低、能耗高的不足,设计了一种多级环量增升机翼。通过测力试验,对比研究了多级环量控制在增升方面的控制效果,并且在多级环量控制基础上研究了吹气系数对机翼气动力性能的影响。通过PIV 试验,研究了临界吹气系数前后的流动控制机理。测力结果表明,相比于无环量控制,在输入流量Q=9.84 m3/h时,三喷口吹气(多级环量控制)的最大升阻比提高了95.3%;随着吹气系数的增加,环量控制先后经历分离控制和超环量控制2种阶段,在分离控制阶段,升力系数随吹气系数的增加显著提升,阻力系数先减小后增大;在超环量控制阶段,随吹气系数的增加,升力系数提升效果减弱,阻力系数逐渐增大最后趋于平缓。PIV研究结果表明,在分离控制阶段,随吹气系数的增加,射流分离点沿圆弧后缘下移,增大了速度环量使升力提高,并且尾迹区范围减小、速度提升,使阻力减小;在超环量控制阶段,高速射流使后缘流线产生了大的偏转曲率,起到了气动襟翼的作用,并且在大迎角下兼具控制流动分离的效果。此外,引入了有效升阻比的概念对多级环量增升机翼的气动效率进行评估,发现在分离控制阶段多级环量控制机翼的功率系数较小、有效升阻比最大,气动效率最高。

关键词: 环量控制, 增升, Coanda效应, 风洞试验, PIV

Abstract:

Aiming at the weaknesses of low aerodynamic efficiency and high energy consumption of single-stage circulation control, we design a multistage circulation lift wing. Through the force measurement experiment, the control effect of the multistage circulation control in the aspect of lift increase is comparatively studied, and the influence of the blow coefficient on the aerodynamic performance of the wing is examined based on the multistage circulation control. The flow control mechanism before and after the critical blowing coefficient is studied by a Particle Image Velocimetry (PIV) experiment. The force measurement results show that the maximum lift-to-drag ratio of three slot blowing (multistage circulation control) is improved by 95.3% compared with that of non-circulation control with the input flow Q=9.84 m3/h. With the increase of the blowing coefficient, the circulation control undergoes two stages: separation control and super circulation control. In the separation control stage, the lift coefficient increases significantly with the increase of the blowing coefficient, while the drag coefficient decreases first and then increases. In the super circulation control stage, the increase of the blowing coefficient leads to the weakening of the lifting effect of the lift coefficient, while the drag coefficient gradually increases and finally flattens out. The PIV results show that, in the separation control stage, with the increase of the blowing coefficient, the jet separation point moves down along the back edge of the arc, increasing the velocity circulation to improve the lift, and the wake area decreases and the velocity increases to reduce the drag. In the super circulation control stage, the high-speed jet causes the trailing edge streamlines to produce large deflection curvature, functioning as a pneumatic flap, exhibiting the effect of controlling flow separation at high angles of attack. In addition, the concept of effective lift-to-drag ratio is introduced to evaluate the aerodynamic efficiency of the multistage circulation control wing. It is found that the power coefficient of the multistage circulation control wing is small, the effective lift-to-drag ratio is the largest, and the aerodynamic efficiency the highest in the separation control stage.

Key words: circulation control, lift enhancement, Coanda effect, wind tunnel experiments, Particle Image Velocimetry (PIV)

中图分类号: