[1] 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43(12):3579-3585. WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43(12):3579-3585 (in Chinese). [2] 赵良玉, 叶俊杰, 何琪, 等. 基于MBSE的民机起飞场景仿真[J]. 系统仿真学报, 2021, 33(10):2499-2510. ZHAO L Y, YE J J, HE Q, et al. Simulation of civil aircraft takeoff scenario based on MBSE[J]. Journal of System Simulation, 2021, 33(10):2499-2510 (in Chinese). [3] 李德林, 毕文豪, 张安, 等. 基于MBSE的民机研制过程管理[J]. 系统工程与电子技术, 2021, 43(8):2209-2220. LI D L, BI W H, ZHANG A, et al. MBSE-based process management in the development of civil aircraft[J]. Systems Engineering and Electronics, 2021, 43(8):2209-2220 (in Chinese). [4] 王文跃,侯俊杰,毛寅轩,等. 面向复杂产品研制的MBSE体系架构及其发展趋势研究[J/OL]. 控制与决策, https://doi.org/10.13195/j.kzyjc.2021.1354. WANG W Y, HOU J J, MAO Y X, et al. Research on MBSE architecture for complex product development and trends[J/OL]. Control and Decision, https://doi.org/10.13195/j.kzyjc.2021.1354 (in Chinese). [5] 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4):84-86. CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4):84-86 (in Chinese). [6] ZIMMERMAN P, GILBERT T, SALVATORE F. Digital engineering transformation across the Department of Defense[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2019, 16(4):325-338. [7] 肖楚琬, 韩维, 孙阳, 等. 基于军事需求工程的军用飞机EWIS设计需求分析[J]. 海军航空工程学院学报, 2018, 33(6):539-545. XIAO C W, HAN W, SUN Y, et al. Requirement analysis of military aircraft EWIS design based on military requirements engineering[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(6):539-545 (in Chinese). [8] 沈腾, 孟繁鑫, 张浩驰. 需求工程方法在机载系统研发中的应用研究[J]. 航空科学技术, 2019, 30(12):23-29. SHEN T, MENG F X, ZHANG H C. Application research of requirement engineering method in airborne system development[J]. Aeronautical Science & Technology, 2019, 30(12):23-29 (in Chinese). [9] 曾卫平, 孙强, 占日新, 等. 直升机需求工程方法与应用研究[J]. 直升机技术, 2020(3):13-18. ZENG W P, SUN Q, ZHAN R X, et al. Research on helicopter requirement engineering method and application[J]. Helicopter Technique, 2020(3):13-18 (in Chinese). [10] JAMSHIDI M. Systems of systems engineering:Principles and applications[M]. Boca Raton:CRC Press, 2017. [11] KEATING C, ROGERS R, UNAL R, et al. System of systems engineering[J]. Engineering Management Journal, 2003, 15(3):36-45. [12] LIU H, TIAN Y L, GAO Y, et al. System of systems oriented flight vehicle conceptual design:Perspectives and progresses[J]. Chinese Journal of Aeronautics, 2015, 28(3):617-635. [13] LIU H, TIAN Y L, ZHANG C Y, et al. Evaluation model of design for operation and architecture of hierarchical virtual simulation for flight vehicle design[J]. Chinese Journal of Aeronautics, 2012, 25(2):216-226. [14] PAN X, YIN B S, HU J M. Modeling and simulation for SoS based on the DoDAF framework[C]//The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety. Piscataway:IEEE Press,2011:1283-1287. [15] 申彦君. 基于DoDAF的体系结构建模在反潜飞机任务系统设计中的应用[J]. 电光与控制, 2014, 21(9):90-94. SHEN Y J. Application of DoDAF based architectural model in mission system design of anti-submarine aircraft[J]. Electronics Optics & Control, 2014, 21(9):90-94 (in Chinese). [16] 刘思彤, 张占月, 许益乔, 等. 基于DoDAF的高超飞行器防御作战体系结构建模[J]. 军事运筹与系统工程, 2021, 35(3):73-80. LIU S T, ZHANG Z Y, XU Y Q, et al. Modeling for defense combat system architecture of hypersonic vehicle based on DoDAF[J]. Military Operations Research and Systems Engineering, 2021, 35(3):73-80 (in Chinese). [17] 高悦, 茹乐, 迟文升, 等. 基于体系结构设计的空战系统任务元模型建模[J]. 系统工程与电子技术, 2021, 43(11):3229-3238. GAO Y, RU L, CHI W S, et al. Task meta-model modeling of air combat system based on system architecture design[J]. Systems Engineering and Electronics, 2021, 43(11):3229-3238 (in Chinese). [18] WEILKIENS T. Systems engineering with SysML/UML:Modeling, analysis, design[M]. Burlington:The MK/OMG Press, 2011:143-270. [19] HUANG E, RAMAMURTHY R, MCGINNIS L F. System and simulation modeling using SYSML[C]//2007 Winter Simulation Conference. Piscataway:IEEE Press,2007:796-803. [20] XIAO F, CHEN B, LI R, et al. A model-based system engineering approach for aviation system design by applying SysML modeling[C]//2020 Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press,2020:1361-1366. [21] MANE M, CROSSLEY W A, NUSAWARDHANA. System-of-systems inspired aircraft sizing and airline resource allocation via decomposition[J]. Journal of Aircraft, 2007, 44(4):1222-1235. [22] 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39(11):222235. ZHOU J, GONG C L, SU H, et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222235 (in Chinese). [23] PAPAGEORGIOU A, ÖLVANDER J, AMADORI K, et al. Multidisciplinary and multifidelity framework for evaluating system-of-systems capabilities of unmanned aircraft[J]. Journal of Aircraft, 2019, 57(2):317-332. [24] SUN X Q, GOLLNICK V, LI Y C, et al. Intelligent multicriteria decision support system for systems design[J]. Journal of Aircraft, 2014, 51(1):216-225. [25] 杨昌发, 任勇, 冷智辉, 等. 航空集群系统空对地作战效能涌现方法研究[J]. 火力与指挥控制, 2021, 46(6):47-51. YANG C F, REN Y, LENG Z H, et al. Research on effectiveness emergence method for aircraft swarms system in air-to-ground combat[J]. Fire Control & Command Control, 2021, 46(6):47-51 (in Chinese). [26] WANG Z, LIU S F, FANG Z G. Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2020, 14(3):4188-4196. [27] 王在刚, 赵晓哲. 舰载直升机拦截鱼雷的战术可行性研究[J]. 火力与指挥控制, 2005, 30(2):66-68. WANG Z G, ZHAO X Z. Research on tactical feasibility of intercepting torpedo by carrier helicopter[J]. Fire Control & Command Control, 2005, 30(2):66-68 (in Chinese). [28] 王在刚, 熊正祥, 孙永侃. 直升机对鱼雷预警的可行性及战术模型[J]. 火力与指挥控制, 2007, 32(2):34-36, 40. WANG Z G, XIONG Z X, SUN Y K. Research on the feasibility and tactical model of helicopter warning against torpedo[J]. Fire Control and Command Control, 2007, 32(2):34-36, 40 (in Chinese). [29] BASTIAN N D, FULTON L V, MITCHELL R, et al. The future of vertical lift:Initial insights for aircraft capability and medical planning[J]. Military Medicine, 2012, 177(7):863-869. [30] KARPUK S, ELHAM A. Influence of novel airframe technologies on the feasibility of fully-electric regional aviation[J]. Aerospace, 2021, 8(6):163. [31] CONNORS C D, MILLER J O, LUNDAY B J. Using agent-based modeling and a designed experiment to simulate and analyze a new air-to-air missile[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(3):321-330. [32] GAO Y, LIU H, ZHOU Y M. An evaluation method of combat aircraft contribution effectiveness based on mission success space design[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):273-286. [33] XIONG P S, LIU H, TIAN Y L. Mission effectiveness evaluation of manned/unmanned aerial team based on OODA and agent-based simulation[C]//AIVR 2019:Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality. Piscataway:Association for Computing Machinery, 2019:31-37. [34] SUN X, LIU H, TIAN Y L, et al. Team effectiveness evaluation and virtual reality scenario mapping model for helicopter emergency rescue[J]. Chinese Journal of Aeronautics, 2020, 33(12):3306-3317. [35] AU T A, HOEK P J, LO E H S. Combat analysis of joint force options using agent-based simulation[C]//2018 Military Communications and Information Systems Conference (MilCIS). Piscataway:IEEE Press,2018:1-7. [36] BILTGEN P T. A methodology for capability-based technology evaluation for systems-of-systems[D]. Atlanta:Georgia Institute of Technology, 2007. [37] LUMMUS R. Mission battle management system fighter engagement manager concept[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. Reston:AIAA, 2003:2857. [38] GUO Y, GAO Y, LIU H, et al. Mission simulation and stealth effectiveness evaluation based on fighter engagement manager (FEM)[J]. DEStech Transactions on Computer Science and Engineering, 2017(cece):328-335. [39] NOSEWORTHY J R. The test and training enabling architecture (TENA) supporting the decentralized development of distributed applications and LVC simulations[C]//2008 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications. Piscataway:IEEE Press,2008. [40] FVGENSCHUH A, MARAHRENS S, JOHANNSMANN L M, et al. Using computer-generated virtual realities, operations research, and board games for conflict simulations[J]. Simulation and Wargaming, 2021:273-287. [41] 阮开智, 袁晴晴, 翟文华, 等. 基于Xsim平台的防空导弹武器系统仿真平台设计[J]. 系统仿真学报, 2020, 32(1):142-148. RUAN K Z, YUAN Q Q, ZHAI W H, et al. Design of air defense missile weapon system simulation platform based on xsim platform[J]. Journal of System Simulation, 2020, 32(1):142-148 (in Chinese). [42] 刘波韬, 李定主, 王学文, 等. 基于XSim仿真平台的榴弹炮建模与弹道仿真[J]. 火力与指挥控制, 2022, 47(3):173-179. LIU B T, LI D Z, WANG X W, et al. Howitzer modeling and trajectory simulation based on XSimStudio simulation platform[J]. Fire Control & Command Control, 2022, 47(3):173-179 (in Chinese). [43] BERNARD J, CRUZ-NEIRA C, OLIVER J, et al. Command and control embedded training:Visualization of the joint battlespace:AFRL-IF-RS-TR-2004-177[R]. New York:Air Force Research Laboratory, 2004. [44] 张延, 余红英, 戚艺雪, 等. 基于Unity3D/3DMAX的导弹视景仿真系统[J]. 科技视界, 2013(25):151, 199. ZHANG Y, YU H Y, QI Y X, et al. Missile visual simulation system based on Unity3D/3DMAX[J]. Science & Technology Vision, 2013(25):151, 199 (in Chinese). [45] 王远明, 卢宽, 贾倩, 等. 基于Unigine的舰载航空视景仿真技术研究[J]. 系统仿真学报, 2017, 29(9):2087-2092. WANG Y M, LU K, JIA Q, et al. Research on techniques of shipboard aviation scene simulation based on unigine[J]. Journal of System Simulation, 2017, 29(9):2087-2092 (in Chinese). [46] 孙旺, 刘西, 南英. 基于MFC的Vega Prime航空飞行器动态视景仿真[J]. 指挥控制与仿真, 2019, 41(5):87-94. SUN W, LIU X, NAN Y. Dynamic visual simulation of aviation aircraft using Vega prime based on MFC[J]. Command Control & Simulation, 2019, 41(5):87-94 (in Chinese). [47] 王婷婷, 林德福, 朱永伟. 基于无人直升机的任务推演视景仿真研究[J]. 计算机仿真, 2019, 36(9):66-69. WANG T T, LIN D F, ZHU Y W. Mission rehearsal visual simulation research based on unmanned helicopter[J]. Computer Simulation, 2019, 36(9):66-69 (in Chinese). [48] 周祥鑫. 基于FlightGear的直升机吊篮救助仿真研究[D]. 大连:大连海事大学, 2020:58. ZHOU X X. FlightGear-based marine helicopter hanging basket rescue training simulation research[D]. Dalian:Dalian Maritime University, 2020:58 (in Chinese). [49] 陈铭杰, 池程芝, 刘博文, 等. 基于场景的民用飞机健康管理可视化仿真研究与实现[J]. 航空科学技术, 2020, 31(7):35-39. CHEN M J, CHI C Z, LIU B W, et al. Research and implementation of visual simulation of civil aircraft health management based on scenario[J]. Aeronautical Science & Technology, 2020, 31(7):35-39 (in Chinese). [50] CHENG R, WU N, CHEN S, et al. Will metaverse be nextg internet? Vision, hype, and reality[J]. ArXiv.Preprint.arXiv:2201.12894, 2022. [51] DUAN H H, LI J Y, FAN S Z, et al. Metaverse for social good:A university campus prototype[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York:ACM, 2021. [52] CARROLL J M. Five reasons for scenario-based design[J]. Interacting with Computers, 2000, 13(1):43-60. [53] GO K, CARROLL J M. The blind men and the elephant[J]. Interactions, 2004, 11(6):44-53. [54] ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press,2015:982-988. [55] JAFER S, CHHAYA B, DURAK U, et al. Formal scenario definition language for aviation:Aircraft landing case study[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2016. |