1 |
YOUNGBLOOD J, TALAY T. Solar-powered airplane design for long-endurance, high-altitude flight[C]∥Proceedings of the 2nd International Very Large Vehicles Conference. Reston: AIAA, 1982.
|
2 |
YOUNGBLOOD J, TALAY T, PEGG R. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion[C]∥Proceedings of the 20th Joint Propulsion Conference. Reston: AIAA, 1984.
|
3 |
NOTH A. Design of solar powered airplanes for continous flight[D]. Zurich: ETH Zurich, 2008.
|
4 |
NAZARUDEEN S, HARASANI W I, RAFIQUE A F. Conceptual design of a Solar HALE UAV[J]. Journal of Advanced Research Design, 2018, 44(1): 30-40.
|
5 |
JIAJAN W, KAMPOON J, KLONGTRUJROK J, et al. Conceptual design of tactical solar power UAV[J]. IOP Conference Series: Materials Science and Engineering, 2019, 501: 012011.
|
6 |
BRANDT S A, GILLIAM F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4): 703-709.
|
7 |
MALEKI M H. Conceptual design method for solar powered aircrafts[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
|
8 |
SULTAN S. Solaris project: The design of a solar powered UAV [D]. Västerås: Mälardalen University, 2011.
|
9 |
TSAGARAKIS M. Project solaris-analysis of airfoil for solar powered flying wing UAV[D]. Västerås: Mälardalen University, 2011.
|
10 |
LAUKKANEN M. Project solaris-mass and balance analysis tool for a solar powered UAV[D]. Västerås:Mälardalen University, 2009.
|
11 |
ROMEO G, FRULLA G. Heliplat®: High altitude very-long endurance solar powered UAV for telecommunication and Earth observation applications[J]. The Aeronautical Journal, 2004, 108(1084): 277-293.
|
12 |
ROMEO G, FRULLA G, CESTINO E. Heliplat®: A high altitude very-long endurance solar powered platform for border patrol and forest fire detection[J]. WIT Transactions on the Built Environment, 2005, 82(1): 1743-3509.
|
13 |
CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science and Technology, 2006, 10(6): 541-550.
|
14 |
张德虎, 张健, 李军府. 太阳能飞机能量平衡建模[J]. 航空学报, 2016, 37(S1): 16-23.
|
|
ZHANG D H, ZHANG J, LI J F. Energy balance modeling of solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 16-23 (in Chinese).
|
15 |
昌敏, 周洲, 李盈盈. 基于能量平衡的太阳能飞机可持续高度分析[J]. 西北工业大学学报, 2012, 30(4): 541-546.
|
|
CHANG M, ZHOU Z, LI Y Y. An effective theoretical analysis of persistent flight altitudes of solar-powered airplanes[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 541-546 (in Chinese).
|
16 |
杨宇丹, 朱炳杰, 郭正, 等. 太阳能无人机能源系统参数的敏度分析[J]. 上海交通大学学报, 2020, 54(10): 1045-1052.
|
|
YANG Y D, ZHU B J, GUO Z, et al. The sensitivity analysis of energy system parameters of solar powered unmanned aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1045-1052 (in Chinese).
|
17 |
田孟伟, 赵立杰. 太阳能无人机功率-能量平衡计算的参数化分析[J]. 飞机设计, 2020, 40(5): 24-27.
|
|
TIAN M W, ZHAO L J. Parametric analysis of power-energy balance calculation of solar UAV[J]. Aircraft Design, 2020, 40(5): 24-27 (in Chinese).
|
18 |
张芳, 徐含乐, 任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 12(24): 6245-6251.
|
|
ZHANG F, XU H L, REN W. Research of Special Solar-powered Aircraft Conceptual Parameters design method[J]. Science Technology and Engineering, 2012, 12(24): 6245-6251 (in Chinese).
|
19 |
GUEYMARD C A. Revised composite extraterrestrial spectrum based on recent solar irradiance observations[J]. Solar Energy, 2018, 169: 434-440.
|
20 |
REDA I, ANDREAS A. Solar position algorithm for solar radiation applications[J]. Solar Energy, 2004, 76(5): 577-589.
|
21 |
乔宇航, 马东立, 邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(3): 320-324.
|
|
QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 320-324 (in Chinese).
|
22 |
ZHU J J, WANG X J, ZHANG H G, et al. Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2095-2108.
|