[1] YOUNGBLOOD J, TALAY T. Solar-powered airplane design for long-endurance, high-altitude flight[C], 1982: 811.
[2] YOUNGBLOOD J, TALAY T, PEGG R. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion[C], 1984: 1430.
[3] NOTH A. Design of solar powered airplanes for continous flight[D]. ETH Zurich, 2008.
[4] NAZARUDEEN S, Harasani W I, Rafique A F. Conceptual design of a Solar HALE UAV[J]. Journal of Advanced Research Design, 2018, 44(1): 30-40.
[5] JIAJAN W, KAMPOON J, KLONGTRUJROK J, et al. Conceptual Design of Tactical Solar Power UAV[C], IOP Publishing, 2019: 012011.
[6] BRANDT S A, GILLIAM F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4): 703-709.
[7] HAJIAN MALEKI M. Conceptual design method for solar powered aircrafts[C], 2011: 165.
[8] SULTAN S. Solaris Project: The Design of a Solar Powered UAV[R]. Sweden: M?lardalen University, School of Innovation, Design and Engineering, 2011.
[9] TSAGARAKIS M. Project Solaris-Analysis of airfoil for solar powered flying wing UAV[R]. Sweden: M?lardalen University, School of Innovation, Design and Engineering, 2011.
[10] LAUKKANEN M. Project Solaris-Mass and balance analysis tool for a solar powered UAV[R]. Sweden: M?lardalen University, School of Innovation, Design and Engineering, 2009.
[11] ROMEO G, FRULLA G. HELIPLAT?: high altitude very-long endurance solar powered UAV for telecommunication and Earth observation applications[J]. The Aeronautical Journal, 2004, 108(1084): 277-293.
[12] ROMEO G, FRULLA G, CESTINO E. Heliplat?: A high altitude very-long endurance solar powered platform for border patrol and forest fire detection[J]. WIT Transactions on the Built Environment, 2005, 82(1): 1743-3509.
[13] CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science and Technology, 2006, 10(6): 541-550.
[14] 张德虎, 张健, 李军府. 太阳能飞机能量平衡建模[J]. 航空学报, 2016, 37(1): 16-23.
ZHANG D H, ZHANG J, LI F J. Energy balance modeling for solar powered aircraft[J]. Acta Aeronautica et Astro-nautica Sinica, 2016, 37(1): 16-23 (in Chinese).
[15] 昌敏, 周洲, 李盈盈. 基于能量平衡的太阳能飞机可持续高度分析[J]. 西北工业大学学报, 2012, 30(4): 541-546.
CHANG M, ZHOU Z, LI Y Y. An Effective Theoretical Analysis of Persistent Flight Altitudes of Solar-Powered Airplanes[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 541-546 (in Chinese).
[16] 杨宇丹, 朱炳杰, 郭正. 太阳能无人机能源系统参数的敏度分析[J]. 上海交通大学学报, 2020, 54(10): 1045-1052.
YANG Y D, ZHU B J, GUO Z. The Sensitivity Analysis of Energy System Parameters of Energy Solar Powered Unmanned Aerial Vehicl [J]. Journal of Shanghai Jiao Tong Uiversity, 2020, 54(10): 1045-1052 (in Chinese).
[17] 田孟伟, 赵立杰. 太阳能无人机功率-能量平衡计算的参数化分析[J]. 飞机设计, 2020, 40(05): 24-27.
TIAN M W, ZHAO L J. Parametric Analysis of Power-energy Balance Calculation of Solar UAV[J]. Aircraft Design, 2020, 54(10): 1045-1052 (in Chinese).
[18] 张芳, 徐含乐, 任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 20(24): 6245-6251.
ZHANG F, XU H L, REN W. Research of Special Solar-powered Aircraft Conceptual Parameters design method[J]. Science Technology and Engineering, 2012, 20(24): 6245-6251 (in Chinese).
[19] GUEYMARD C A. Revised composite extraterrestrial spectrum based on recent solar irradiance observations[J]. Solar Energy, 2018, 169(1): 434-440.
[20] REDA I, ANDREAS A. Solar position algorithm for solar radiation applications[J]. Solar Energy, 2004, 76(5): 577-589.
[21] 乔宇航, 马东立, 邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(03): 320-324.
Qiao Y H, Ma D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(03): 320-324 (in Chinese).
[22] JINGJING Z, XIAOJUN W, ZHANG H, et al. Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2095-2108. |