[1] SLOTNOCK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [2] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese). [3] 陈坚强, 马燕凯, 闵耀兵, 等. 国家数值风洞(NNW)通用软件同构混合求解器设计[J]. 空气动力学学报, 2020, 38(6):1103-1110, 1102. CHEN J Q, MA Y K, MIN Y B, et al. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel(NNW)PHengLEI[J]. Acta Aerodynamica Sinica, 2020, 38(6):1103-1110, 1102(in Chinese). [4] 何磊, 郭勇颜, 曾志春, 等. 国家数值风洞(NNW)软件自动化集成与测试平台设计与研发[J]. 空气动力学学报, 2020, 38(6):1158-1164. HE L, GUO Y Y, ZENG Z C, et al. Design and development of software automated continuous integration and testing platform for National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1158-1164(in Chinese). [5] 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6):1165-1172. ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1165-1172(in Chinese). [6] 白汉利, 陈晓梦, 蒲巧. 国家数值风洞(NNW)集成框架系统研发[J]. 空气动力学学报, 2020, 38(6):1149-1157. BAI H L, CHEN X M, PU Q. Development of integration framework system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1149-1157(in Chinese). [7] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857(in Chinese). [8] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2):254-264, 180. XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2):254-264, 180(in Chinese). [9] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017. [10] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型参数不确定度量化分析与应用研究[J]. 宇航学报, 2020, 41(9):1141-1150. XIANG X H, ZHANG Y F, CHEN J Q, et al. Uncertainty quantification analysis and application research on cross-flow transition model parameters[J]. Journal of Astronautics, 2020, 41(9):1141-1150(in Chinese). [11] XIANG X H, REN H J, ZHANG Y F, et al. Transition prediction with hypersonic cross-flow model on {HIFiRE}-5[J]. Journal of Physics:Conference Series, 2021, 1786:012051. [12] 向星皓, 张毅锋, 陈坚强, 等. 高超声速三维边界层转捩预测模型研究[C]//第十一届全国流体力学学术会议论文集, 2020:132. XIANG X H, ZHANG Y F, CHEN J Q, et al. Transition model investigation on hypersonic three dimensional boundary layer[C]//The 11th National Conference on Fluid Mechanics, 2020:132(in Chinese). [13] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J].航空学报, 2021, 42(4):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of Hypersonic Transition Research Vehicle (HyTRV)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):124317(in Chinese). [14] SONG R J, ZHAO L, HUANG Z F. Improvement of the parabolized stability equation to predict the linear evolution of disturbances in three-dimensional boundary layers based on ray tracing theory[J]. Physical Review Fluids, 2020, 5(3):033901. [15] 毕卫涛, 唐帆, 胡永煌, 等. 基于结构系综理论发展可靠工程转捩模型的一种新思路[J]. 空气动力学学报, 2020, 38(6):1136-1148. BI W T, TANG F, HU Y H, et al. New perspective for developing reliable engineering transition model based on the structural ensemble dynamics theory[J]. Acta Aerodynamica Sinica, 2020, 38(6):1136-1148(in Chinese). [16] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学:物理学力学天文学, 2019, 49(12):118-128. TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12):118-128(in Chinese). [17] TU G H, YANG Q, CHEN J Q, et al. Preliminary conception and test of global stability decomposition for flow stability analysis[C]//10th International Conference on Computational Fluid Dynamics, 2018. [18] 陈十一, 王建春, 郑钦敏, 等. 可压缩湍流的多尺度分析[J]. 空气动力学学报, 2021, 39(1):1-17. CHEN S Y, WANG J C, ZHENG Q M, et al. Multi-scale analyses of compressible turbulence[J]. Acta Aerodynamica Sinica, 2021, 39(1):1-17(in Chinese). [19] YUAN Z L, XIE C Y, WANG J C. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115106. [20] XIE C Y, YUAN Z L, WANG J C. Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115101. [21] 吴霆, 时北极, 王士召, 等. 大涡模拟的壁模型及其应用[J]. 力学学报, 2018, 50(3):453-466. WU T, SHI B J, WANG S Z, et al. Wall-model for large-eddy simulation and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3):453-466(in Chinese). [22] 陈浩, 袁先旭, 毕林, 等. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8):123642. CHEN H, YUAN X X, BI L, et al. Simulation of separated flow based on RANS/LES hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):123642(in Chinese). [23] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105. [24] ZHU L Y, ZHANG W W, SUN X X, et al. Turbulence closure for high Reynolds number airfoil flows by deep neural networks[J]. Aerospace Science and Technology, 2021, 110:106452. [25] ZHU G W, HUANG S H. High-order large-eddy simulation of the transport of turbulent wind field:accuracy and efficiency[C]//The 15th International Conference on Wind Engineering, 2019. [26] ZHU G W, HUANG S H, LI Q S. Large-eddy simulation of the inflow turbulence transport and aerodynamics of a rectangular 5:1 cylinder with high-order numerical methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207:104366. [27] 林宗虎. 能源动力中多相流热物理基础理论与技术研究[M]. 北京:中国电力出版社, 2010. LIN Z H. Research on the fundamental theory and technology of multiphase flow thermo-physics in energy dynamics[M]. Beijing:China Electric Power Press, 2010(in Chinese). [28] SHI W K, SHEN Y M, CHEN J Q, et al. SPH simulations on water entry characteristics of a re-entry capsule[J]. Engineering Analysis with Boundary Elements, 2020, 119:257-268. [29] 沈雁鸣, 施文奎, 陈坚强, 等. 变光滑长度SPH方法在入水冲击中的应用研究[J]. 船舶力学, 2020, 24(3):323-331. SHEN Y M, SHI W K, CHEN J Q, et al. Application of SPH method with space-based variable smoothing length to water entry simulation[J]. Journal of Ship Mechanics, 2020, 24(3):323-331(in Chinese). [30] MENG Z F, WANG P P, ZHANG A M, et al. A multiphase SPH model based on Roe's approximate Riemann solver for hydraulic flows with complex interface[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365:112999. [31] LI M K, ZHANG A M, MING F R, et al. An axisymmetric multiphase SPH model for the simulation of rising bubble[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366:113039. [32] ZHANG Z L, KHALID M S U, LONG T, et al. Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method[J]. Journal of Fluids and Structures, 2020, 94:102942. [33] LONG T, YANG P Y, LIU M B. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems[J]. International Journal of Mechanical Sciences, 2020, 174:105558. [34] 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2):520717. DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520717(in Chinese). [35] 李伟斌, 宋超, 易贤, 等. 动态结冰孔隙结构三维建模方法[J]. 化工学报, 2020, 71(3):1009-1017. LI W B, SONG C, YI X, et al. 3-D modeling method of porous structure for dynamic icing[J]. CIESC Journal, 2020, 71(3):1009-1017(in Chinese). [36] ZHANG H X, ZHANG X W, YI X, et al. Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32(12):122108. [37] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):139-153. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):139-153(in Chinese). [38] 杨肖峰, 李成祥, 李芹, 等. 高焓气流下表面跨尺度催化传热过程的CFD/RMD耦合计算方法探究[C]//2020年工程热物理年会, 2020. YANG X F, LI C X, LI Q, et al. Study in CFD/RMD coupling calculation method for cross-scale catalytic heat transfer progress under high enthalpy airflow[C]//2020 Annual Meeting of Engineering Thermophysics, 2020(in Chinese). [39] 俞逸斯, 李明佳, 李冬, 等. C/SiC复合材料碳纤维氧化烧蚀机理研究[C]//2020年工程热物理年会, 2020. YU Y S, LI M J, LI D, et al. Study on oxidation and ablation and mechanism of carbon fiber in C/SiC composites[C]//2020 Annual Meeting of Engineering Thermophysics, 2020(in Chinese). [40] 张超, 肖光明, 王娴, 等. A320座舱内流动传热特性的数值研究[C]//2020年全国环境风工程学术会议,2020. ZHANG C, XIAO G M, WANG X, et al. Numerical simulation of heat transfer characteristics of flow in cockpit of A320[C]//2020 National Environmental Wind Engineering Academic Conference, 2020(in Chinese). [41] CHEN M J, LI Q, ZHANG P. Numerical prediction of high temperature thermal contact resistance of HTA-C/ZrB2-SiC with radiation effects[J]. International Communications in Heat and Mass Transfer, 2021, 120:105058. [42] 赵建宁, 刘冬欢, 魏东, 等. 考虑界面接触热阻的一维复合结构的热整流机理[J]. 物理学报, 2020, 69(5):056501. ZHAO J N, LIU D H, WEI D, et al. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance[J]. Acta Physica Sinica, 2020, 69(5):056501(in Chinese). [43] ZHAO J N, WEI D, GAO A Q, et al. Thermal rectification enhancement of bi-segment thermal rectifier based on stress induced interface thermal contact resistance[J]. Applied Thermal Engineering, 2020, 176:115410. [44] 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4):641-650(in Chinese). [45] 王梓伊, 张伟伟, 刘磊. 高超声速飞行器热气动弹性仿真计算方法综述[J]. 气体物理, 2020, 5(6):1-15. WANG Z Y, ZHANG W W, LIU L. Review of simulation methods of hypersonic aerothermoelastic problems[J]. Physics of Gases, 2020, 5(6):1-15(in Chinese). [46] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2021(in press). LIU P X, YUAN X X, SUN D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021(in press) (in Chinese). [47] 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报, 2020, 38(6):1111-1119, 1128. WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica, 2020, 38(6):1111-1119, 1128(in Chinese). [48] 李佳伟, 王江峰, 杨天鹏, 等. "Ⅳ型"激波干扰中流-热-固耦合问题一体化计算分析[J]. 航空学报, 2019, 40(12):123190. LI J W, WANG J F, YANG T P, et al. Integrated numerical analysis of fluid-thermal-structural problems in "Type Ⅳ" shock wave interference[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123190(in Chinese). [49] CUI Z L, ZHAO J, HE L C, et al. A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets[J]. Physics of Fluids, 2020, 32(11):112110. [50] 丁明松, 刘庆宗, 江涛, 等. 高温气体效应对高超声速磁流体控制的影响[J]. 航空学报, 2020, 41(2):123278. DING M S, LIU Q Z, JIANG T, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica Astronautica Sinica, 2020, 41(2):123278(in Chinese). [51] 丁明松, 傅杨奥骁, 高铁锁, 等. 高超声速磁流体力学控制霍尔效应影响[J]. 物理学报, 2020, 69(21):214703. DING M S, FU Y A X, GAO T S, et al. Influence of Hall effect on hypersonic magnetohydrodynamic control[J]. Acta Physica Sinica, 2020, 69(21):214703(in Chinese). [52] ZHANG R, ZHONG C W, LIU S, et al. Large-eddy simulation of wall-bounded tur-bulent flow with high-order discrete unified gas-kinetic scheme[J]. Advances in Aerodynamics, 2020, 2:1-26. [53] YUAN R F, ZHONG C W. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes[J]. Computer Physics Communications, 2020, 247:106972. [54] YUAN R F, LIU S, ZHONG C W. A multi-prediction implicit scheme for steady state solutions of gas flow in all flow regimes[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92:105470. [55] ZHU Y J, LIU C, ZHONG C W, et al. Unified gas-kinetic wave-particle methods II:multiscale simulation on unstructured mesh[DB/OL]. arXiv preprint:1903.11861, 2019. [56] FEI F, ZHANG J, LI J, et al. A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows[J]. Journal of Computational Physics, 2020, 400:108972. [57] 费飞, 张俊, 柳朝晖. 基于动理学模型的多尺度随机粒子方法[J]. 空气动力学学报, 2019, 37(5):731-739. FEI F, ZHANG J, LIU Z H. Multi-scale stochastic particle method based on kinetic models[J]. Acta Aerodynamica Sinica, 2019, 37(5):731-739(in Chinese). [58] YUAN Z Y, ZHAO W W, JIANG Z Z, et al. Modified nonlinear coupled constitutive relations model for hypersonic nonequilibrium flows[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(4):848-859. [59] 李廷伟,张莽,赵文文, 等. 面向稀薄流非线性本构预测的机器学习方法研究[J]. 航空学报, 2021,42(4):524386. LI T W, ZHANG M, ZHAO W W, et al. Study of machine learning method in the correction of rarefied nonlinear constitutive relations[J].Acta Aeronautica et Astronautica Sinica,2021,42(4):524386(in Chinese). [60] FANG M, LI Z H, LI Z H, et al. DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows[J]. Advances in Aerodynamics, 2020, 2:7. [61] GUO Q L, SUN D, LI C, et al. A new discontinuity indicator for hybrid WENO schemes[J]. Journal of Scientific Computing, 2020, 83(2):1-33. [62] 郭启龙, 涂国华, 陈坚强, 等. 横向矩形微槽对高超边界层失稳的控制作用[J]. 航空动力学报, 2020, 35(1):135-143. GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1):135-143(in Chinese). [63] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101. [64] LI C, SUN D, GUO Q L, et al. A new hybrid WENO scheme on a four-point stencil for Euler equations[J]. Journal of Scientific Computing, 2021, 87(1):1-37. [65] LI C, GUO Q L, SUN D, et al. Improved third-order weighted essentially nonoscillatory schemes with new smoothness indicators[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1):1-23. [66] LI C, CHEN J Q, YUAN X X, et al. Improved weighted NND scheme for shock-capturing[J]. Journal of Physics:Conference Series, 2021, 1786:012043. [67] WU C H, WU L, ZHANG S H. A smoothness indicator constant for sine functions[J]. Journal of Computational Physics, 2020, 419:109661. [68] WU C H, WU L, LI H, et al. Very high order WENO schemes using efficient smoothness indicators[J]. Journal of Computational Physics, 2021, 432:110158. [69] LI H, LUO Y, ZHANG S H. Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet[J]. Journal of Scientific Computing, 2021, 87(1):1-39. [70] GUO J, ZHU H J, YAN Z G, et al. High-order hybrid WCNS-CPR scheme for shock capturing of conservation laws[J]. International Journal of Aerospace Engineering, 2020, 2020:1-13. [71] SHAO S. An efficient DDG/FV hybrid method for 3D viscous flow simulations on tetrahedral grids[J]. Communications in Computational Physics, 2020, 27(3):725-752. [72] 龚小权, 贾洪印, 陈江涛, 等. 基于雅可比矩阵精确计算的GMRES隐式方法在间断Galerkin有限元中的应用[J]. 空气动力学学报, 2019, 37(1):121-132. GONG X Q, JIA H Y, CHEN J T, et al. Applications of GMRES based on exact calculations of Jacobian matrix in discontinuous Galerkin methods[J]. Acta Aerodynamica Sinica, 2019, 37(1):121-132(in Chinese). [73] YAN Z G, PAN Y, CASTIGLIONI G, et al. Nektar++:Design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach[J]. Computers & Mathematics With Applications, 2021, 81:351-372. [74] WANG Q J, DEITERDING R, PAN J H, et al. Consistent high resolution interface-capturing finite volume method for compressible multi-material flows[J]. Computers & Fluids, 2020, 202:104518. [75] ZHANG Y S, REN Y X, WANG Q. Compact high order finite volume method on unstructured grids IV:Explicit multi-step reconstruction schemes on compact stencil[J]. Journal of Computational Physics, 2019, 396:161-192. [76] FENG Y W, LIU T G, WANG K. A characteristic-featured shock wave indicator for conservation laws based on training an artificial neuron[J]. Journal of Scientific Computing, 2020, 83(1):1-34. [77] WANG J F. Solution remapping technique to accelerate flow convergence for finite volume methods applied to shape optimization design[J]. Numerical Mathematics:Theory, Methods and Applications, 2020, 13(4):863-880. [78] ZHANG F, CHENG J, LIU T G. Exponential boundary-layer approximation space for solving the compressible laminar Navier-Stokes equations[J]. Advances in Computational Mathematics, 2020, 46(2):1-36. [79] ZHANG F, CHENG J, LIU T G. A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids[J]. Journal of Computational Physics, 2020, 418:109580. [80] ZHANG F, CHENG J, LIU T G. An asymptotic expansion for 1D steady compressible Navier-Stokes equations under nonuniform enthalpy[J]. Mathematical Methods in the Applied Sciences, 2020, 43(9):5788-5808. |