[1] LIN S P, REITZ R D. Drop and spray formation from a liquid jet[J]. Annual Review of Fluid Mechanics, 1998, 30(1):85-105.
[2] EGGERS J, VILLERMAUX E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3):036601.
[3] GOROKOVSKI M, HERRMANN M. Modeling primary atomization[J]. Annual Review of Fluid Mechanics, 2008, 40(1):343-366.
[4] CIEZKI H K, NEGRI M, HURTTLEN J, et al. Overview of the German Gel Propulsion Technology Program:AIAA-2014-3794[R]. Reston, VA:AIAA, 2014.
[5] RAMASUBRAMANIAN C, NOTAR V, LEE J G. Characterization of near-field spray of nongelled-and gelled impinging doublets at high pressure[J]. Journal of Propulsion and Power, 2015, 31(6):1642-1652.
[6] YANG L J, FU Q F, QU Y Y, et al. Breakup of a power-law liquid sheet formed by an impinging jet injector[J]. International Journal of Multiphase Flow, 2012, 39:37-44.
[7] 杨伟东, 张蒙正. 凝胶推进剂流变及雾化特性研究与进展[J]. 火箭推进, 2005, 31(5):37-42. YANG W D, ZHANG M Z. Research and development of rheological and atomization characteristics of gelled propellants[J]. Journal of Rocket Propulsion, 2005, 31(5):37-42(in Chinese).
[8] 夏振炎, 李珍妮, 李建军, 等. 撞击式射流破碎特性的实验研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(7):770-776. XIA Z Y, LI Z N, LI J J, et al. An experimental study on breakup characteristics of impinging jets[J]. Journal of Tianjin University (Science and Technology), 2016, 49(7):770-776(in Chinese).
[9] XIAO H, SHI Y, XU Z, et al. Atomization characteristics of gelled hypergolic propellant simulants[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(4):743-747.
[10] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese).
[11] MA D J, CHEN X D, KHARE P. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets:AIAA-2011-0097[R]. Reston:AIAA, 2011.
[12] 刘虎, 强洪夫, 韩亚伟, 等. 幂律型凝胶推进剂射流撞击雾化SPH模拟[J]. 推进技术, 2015, 36(9):1416-1425. LIU H, QIANG H F, HAN Y W, et al. SPH simulation of atomization characteristics of power-law gelled propellant formed by two impinging jets[J]. Journal of Propulsion Technology, 2015, 36(9):1416-1425(in Chinese).
[13] HIRT C W, NICHOLOS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[14] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2):112-152.
[15] SCHLOTTKE J, WEIGAND B. Direct numerical simulation of evaporating droplets[J]. Journal of Computational Physics, 2008, 227(10):5215-5237.
[16] GOMMA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS Europe, 2011.
[17] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions:VOF-simulation and experimental analysis[C]//Proceedings of ILASS-Europe, 2002.
[18] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14):799-810.
[19] ZHU C, ERTL M, WEIGNAD B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence[J]. Physics of Fluids, 2013, 25:083102.
[20] SCHRÖDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS Europe, 2011.
[21] BATCHELOR G K. The theory of homogeneous turbu-lence[M]. Cambridge:Cambridge University Press, 1953.
[22] BREMOND N, CLANET C, VILLERMAUX E. Atomization of undulating liquid sheets[J]. Journal of Fluid Mechanics, 2007, 585:421-456.
[23] QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331:59-80.
[24] MIESSE C C. Correlation of experimental data on the disintegration of liquid jets[J]. Industrial and Engineering Chemistry, 1955, 47(9):1690-1701. |