航空学报 > 2020, Vol. 41 Issue (9): 123731-123731   doi: 10.7527/S1000-6893.2020.23731

膨胀效应对激波/湍流边界层干扰的影响

童福林1,2,3, 周桂宇3, 孙东1,3, 李新亮2,4   

  1. 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    3. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    4. 中国科学院大学 工程科学学院, 北京 100049
  • 收稿日期:2019-12-16 修回日期:2020-03-21 出版日期:2020-09-15 发布日期:2020-03-26
  • 通讯作者: 周桂宇 E-mail:453889817@qq.com
  • 基金资助:
    国家自然科学基金(11972356,91852203);国家重点研发计划(2016YFA0401200)

Expansion effect on shock wave and turbulent boundary layer interactions

TONG Fulin1,2,3, ZHOU Guiyu3, SUN Dong1,3, LI Xinliang2,4   

  1. 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-12-16 Revised:2020-03-21 Online:2020-09-15 Published:2020-03-26
  • Supported by:
    National Natural Science Foundation of China (11972356, 91852203); National Key Research and Development Program of China (2016YFA0401200)

摘要: 采用直接数值模拟方法对来流马赫数2.9,30°激波角的入射激波与膨胀角湍流边界层干扰问题进行了数值研究。入射激波在壁面上的名义入射点固定在膨胀角角点,膨胀角角度分别取为0°、2°、5°和10°。通过改变膨胀角角度,考察了膨胀效应对干扰区内复杂流动现象的影响规律和作用机制,如分离泡、物面压力脉动特性、膨胀区湍流边界层和物面剪切应力脉动场等。研究发现,膨胀角角度的增大使得分离区流向长度和法向高度急剧降低,尤其是在强膨胀效应下分离泡形态呈现整体往下游偏移的双峰结构。物面压力脉动功率谱结果表明,膨胀角为2°和5°时,分离激波的非定常运动仍表征为大尺度低频振荡,而膨胀角为10°,强膨胀效应极大地抑制了分离激波的低频振荡,加速了下游再附边界层物面压力脉动的恢复过程。膨胀区湍流边界层雷诺剪切应力各象限事件贡献和出现概率呈现逐步恢复到上游湍流边界层的趋势,Görtler-like流向涡结构展向和法向尺度变化剧烈,同时在近壁区将诱导生成大量小尺度流向涡。此外,物面剪切应力脉动场的本征正交分解分析指出,膨胀效应的影响体现在低阶模态能量的急剧降低从而使得高阶模态的总体贡献相对升高。

关键词: 激波/湍流边界层干扰, 膨胀角, 本征正交分解, 物面剪切应力脉动, 分离泡, 直接数值模拟

Abstract: Direct numerical simulations of impinging shock waves and turbulent boundary layer interactions in an expansion corner for the incident shock of 30° at Mach number 2.9 are performed. The nominal impingement point of incident shock waves at the wall is fixed at the apex of the expansion corner. Four cases for expansion angles of 0°, 2°, 5° and 10° are considered. By changing the expansion angle, this research studies the impact of the expansion effect on the complicated flow phenomena in the interaction region, including the separation bubble, wall pressure fluctuations, the turbulent boundary layer in the expansion region and the fluctuating wall shear stress. Results indicate that the streamwise length and height of the separation region are dramatically decreased when the expansion angle is increased, particularly in the condition of strong expansion effect where the shape of the separation bubble is characterized by double peaks with downstream migration. The power spectrum density of wall pressure fluctuations suggests that the unsteady motion of the separation shock is still dominated by the large-scale low frequency oscillation for the expansion angles of 2° and 5°. When the angle is increased to be 10°, the low-frequency unsteady motion of the separated shock is strongly suppressed and the recovery process of fluctuating wall pressure in the expansion region is obviously accelerated. The quadrant analysis of Reynolds shear stress shows that the contribution and occurrence probability of each quadrant experience a faster recovery as the expansion angle is increased. The Görtler-like vortex structures are dramatically destroyed and more small-scale streamwise vortices are generated in the near-wall region. In addition, the proper orthogonal decomposition analysis of the fluctuating wall shear stress indicates that the influence of the expansion effect is mainly reflected in the sharp decrease of the low-order modes energy and the relative increase of overall contribution of high-order modes.

Key words: shock wave/turbulent boundary layer interaction, expansion corner, proper orthogonal decomposition, wall shear stress fluctuation, separation bubble, direct numerical simulation

中图分类号: