[1] |
ARDONCEAU P L. The structure of turbulence in a supersonic shock wave/boundary layer interaction[J]. AIAA Journal, 1984, 22(9):1254-1262.
|
[2] |
SETTLES G S, BOGDONOFF S M, VAS I E. Incipient separation of a supersonic turbulent boundary layer at high Reynolds number[J]. AIAA Journal, 1976, 14(1):50-56.
|
[3] |
CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46:469-492.
|
[4] |
SETTLES G S, FITZPATRICK T J. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585.
|
[5] |
HUMBLE R A, SCARANO F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635:47-74.
|
[6] |
ERENGIL M E, DOLLING D S. Correlation of separation shock motion with pressure fluctuations in the incoming boundary layer[J]. AIAA Journal, 1991, 29(11):1868-1877.
|
[7] |
ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685[J]. Journal of Fluid Mechanics, 2000, 420:47-83.
|
[8] |
DUPONT P, HADDAD C,DEBIEVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 599:255-277.
|
[9] |
PIPONNIAU S, DUSSAUGE J P,DEBIEVE J F. A simple model for low frequency unsteadiness in shock induced separation[J]. Journal of Fluid Mechanics, 2009, 629:87-108.
|
[10] |
PRIEBE S, WU M,MARTIN M P. Low-frequency unsteadiness in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
|
[11] |
CHEW Y T. Shock wave and boundary layer interaction in the presence of an expansion corner[J]. Aeronautical Quarterly, 1979, 30:506-527.
|
[12] |
CHUNG K M, LU F K. Hypersonic turbulent expansion-corner flow with shock impingement[J]. Journal of Propulsion and Power, 1995, 11(3):441-447.
|
[13] |
WHITE M E, AULT D A. Expansion corner effects on hypersonic shock wave/turbulent boundary-layer interactions[J]. Journal of Propulsion and Power, 1996, 12(6):1169-1173.
|
[14] |
SATHIANARAYANAN A, VERMA S B. Experimental investigation of an incident shock-induced interaction near an expansion corner[J]. AIAA Journal, 2017, 54(3):769-773.
|
[15] |
KONOPKA M, MEINKE M, SCHRODER W. Large-eddy simulation of relaminarization in supersonic flow:AIAA-2012-2978[R]. Reston:AIAA, 2012.
|
[16] |
童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3):123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(3):123328(in Chinese).
|
[17] |
BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston:AIAA, 2005.
|
[18] |
PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185.
|
[19] |
NARASIMHA R, VISWANATH P R. Reverse transition at an expansion corner in supersonic flow[J]. AIAA Journal, 1975, 13(5):693-695.
|
[20] |
童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).
|
[21] |
童福林, 周桂宇, 周浩, 等. 激波/湍流边界层干扰物面剪切应力统计特性[J]. 航空学报, 2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(5):122504(in Chinese).
|
[22] |
DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiment in Fluids, 1985, 3(1):24-32.
|
[23] |
PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18:065113.
|
[24] |
WALLACE J M. Quadrant analysis in turbulence research:History and evolution[J]. Annual Review of Fluid Mechanics, 2016, 48:131-158.
|
[25] |
KROGSTAD P A, SKARE P E. Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer[J]. Physics of Fluids, 1995, 7:2014-2024.
|
[26] |
KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166.
|
[27] |
PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock wave/boundary layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
|
[28] |
ZHUANG Y, TAN H J, LI X, et al. Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow[J]. Physics of Fluids, 2018, 30:061702.
|
[29] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25:539-575.
|