[1] KHURI A I, MUKHOPAHYAY S. Response surface methodology[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2011, 2(2):128-149.
[2] AHN J, KIM H J, LEE D H, et al. Response surface method for airfoil design in transonic flow[J]. Journal of Aircraft, 2012, 38(2):231-238.
[3] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese).
[4] 蒙文巩, 马东立, 楚亮. 基于神经网络响应面的机翼气动稳健性优化设计[J]. 航空学报, 2010, 31(6):1134-1140. MENG W G, MA D L, CHU L. Wing aerodynamic robustness optimization based on neural network response surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1134-1140(in Chinese).
[5] MCDONALD D B, GRANTHAM W J, TABOR W L, et al. Global and local optimization using radial basis function response surface models[J]. Applied Mathematical Modelling, 2007, 31(10):2095-2110.
[6] WANG J G, LIU G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 91(23):2611-2630.
[7] 王晓锋, 席光. 基于Kriging模型的翼型气动性能优化设计[J]. 航空学报, 2005, 26(5):545-549. WANG X F, XI G. Aerodynamic optimization design for airfoil based on Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):545-549(in Chinese).
[8] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420.
[9] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[10] TOAL D J J, BRESSLOFF N W, KEANE A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5):1240-1252.
[11] ZHANG Y, LEITHEAD W E. Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process[J]. Applied Mathematics and Computation, 2005, 171(2):1264-1281.
[12] CHUNG H S, ALONSO J J. Using gradients to construct coKriging approximation models for high-dimensional design optimization problems:AIAA-2002-0317[R]. Reston:AIAA, 2002.
[13] LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and coKriging[J]. AIAA Journal, 2008, 46(2):498-507.
[14] KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1):1-13.
[15] HAN Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[16] LIU W, BATILL S M. Gradient-enhanced response surface approximations using Kriging models:AIAA-2002-5456[R]. Reston:AIAA, 2002.
[17] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[18] JAMESON A, MARTINELLI L, PIERCE N A. Optimum aerodynamic design using the Navier-Stokes equations[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1-4):213-237.
[19] COOK P, MCDONALD M, FIRMIN M. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements:AGARD 138[R]. Paris:AGARD, 1979.
[20] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston:AIAA, 2013.
[21] 张扬, 白俊强, 朱军, 等. 改进Hicks-Henne型函数法在翼型参数化中的应用[J]. 飞行力学, 2011, 29(5):35-38. ZHANG Y, BAI J Q, ZHU J, et al. Application of improved Hicks-Henne shape function to airfoil parameterization[J]. Flight Dynamics, 2011, 29(5):35-38(in Chinese).
[J] |