[1] HERNANDEZ S. Structural optimization:1960-2010 and beyond[J]. Computational Technology Reviews, 2010, 2:177-222.
[2] SCHMIT L A. Structural design by systematic synthesis[C]//Second Conference on Electronic Computation. Pittsburg:ASCE, 1960:105-132.
[3] HICKS R M, MUNNAN E M, VANDERPLAATS G N. An assessment of airfoil design by numerical optimization:NASA TM X-3092[R]. Washington, D.C.:NASA, 1974.
[4] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7):407-412.
[5] SOBIESZCZANSKI-SOBIESKI J, HAFTKA R T. Multidisciplinary aerospace design optimization:Survey of recent developments[J]. Structural Optimization, 1997, 14(1):1-23.
[6] KROO I, ALTUS S, BRAUN R, et al. Multidisciplinary optimization methods for aircraft preliminary design:AIAA-1994-4325[R]. Reston:AIAA, 1994.
[7] AIAA MDO Technical Committee. Current state of the art:Multidisciplinary design optimization:AIAA White Paper[R]. Reston:AIAA, 1991.
[8] ZHANG K S, HAN Z H, LI W J, et al. Bilevel adaptive weighted sum method for multidisciplinary multi-objective optimization[J]. AIAA Journal, 2008, 46(10):2611-2622.
[9] 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4):417-426. YU X Q. Multidisciplinary design optimization for aircraft conceptual and preliminary design:Status and directions[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4):417-426(in Chinese).
[10] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5):608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5):608-612(in Chinese).
[11] VIANA F A C, SIMPSON T W, BALABANOV V, et al. Metamodeling in multidisciplinary design optimization:how far have we really come?[J]. AIAA Journal, 2014, 52(4):670-690.
[12] 张健, 李为吉. 飞机多学科设计优化中的近似方法分析[J]. 航空计算技术, 2005, 35(3):5-8. ZHANG J, LI W J. Approximation methods analysis in multidisciplinary design optimization[J]. Aeronautical Computer Technique, 2005, 35(3):5-8(in Chinese).
[13] HAN Z H, GOERTZ S. A hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(3):1885-1896.
[14] HAN Z H, ZIMMERMANN R, GOERTZ S. An alternative CoKriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210.
[15] HAN Z H, ZHANG K S. Surrogate-based optimization[M]. InTech Book, 2012:343-362.
[16] SCHMIT L A, FARSHI B. Some approximation concepts for structural synthesis[J]. AIAA Journal, 1974, 12(5):692-699.
[17] GIUNTA A A, WATSON L T. A Comparison of approximation modeling techniques:Polynomial versus interpolation models:AIAA-1998-4758[R]. Reston:AIAA, 1998.
[18] KOCH P N, SIMPSON T W, ALLEN J K, et al. Statistical approximations for multidisciplinary design optimization:the problem of the size[J]. Journal of Aircraft, 1999, 36(1):275-286.
[19] SEVANT N E, BLOOR M I G, WILSON M J. Aerodynamic design of a flying wing using response surface methodology[J]. Journal of Aircraft, 2000, 37(4):562-569.
[20] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420.
[21] VAVALLE A, QIN N. Iterative response surface based optimization scheme for transonic airfoil design[J]. Journal of Aircraft, 2007, 44(2):365-376.
[22] KRIGE D G. A statistical approach to some basic mine valuations problems on the witwatersrand[J]. Journal of the Chemical, Metallurgical and Mining Engineering Society of South Africa, 1951, 52(6):119-139.
[23] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[24] POWELL M J D. Algorithms for approximation[M]. New York:Oxford University Press, 1987:141-167.
[25] BUHMANN M D. Acta numerica[M]. New York:Cambridge University Press, 2000:1-38.
[26] KRISHNAMURTHY T. Response surface approximation with augmented and compactly supported radial basis functions:AIAA-2003-1748[R]. Reston:AIAA, 2003.
[27] MULLUR A A, MESSAC A. Extended radial basis functions:more flexible and effective metamodeling[J]. AIAA Journal, 2005, 43(6):1306-1315.
[28] PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2):246-257.
[29] ELANAYAR S V T, SHIN Y C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Transactions on Neural Networks, 1994, 5(4):594-603.
[30] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
[31] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[32] WANG Q, MOIN P, IACCARINO G. A rational interpolation scheme with super-polynomial rate of convergence[J]. SIAM Journal of Numerical Analysis, 2010, 47(6):4073-4097.
[33] WANG Q, MOIN P, IACCARINO G. A high-order multi-variate approximation scheme for arbitrary data sets[J]. Journal of Computational Physics, 2010, 229(18):6343-6361.
[34] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4):897-936.
[35] XIU D. Numerical methods for stochastic computations:A spectral method approach[M]. Princeton:Princeton University Press, 2010:152.
[36] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
[37] FORRESTER A I J, SÓBESTER A, KEANE A. Engineering design via surrogate modeling:A practical guide[M]. Chichester:John Wiley & Sons, 2008.
[38] KEANE A J, NAIR P B. Computational approaches for aerospace design:The pursuit of excellence[M]. Chichester:John Wiley & Sons, 2005.
[39] GIUNTA A A, WOJTKIEWICZ J S F, ELDRED M S. Overview of modern design of experiments methods for computational simulations:AIAA-2003-649[R]. Reston:AIAA, 2003.
[40] FANG K T, LIN D, WINKER P, et al. Uniform design:Theory and application[J]. Technometrics, 2000, 42(3):237-248.
[41] MATHERON G M. Principles of geostatistics[J]. Economic Geology, 1963, 58(8):1246-1266.
[42] MATHERON G. Theory of regionalized variable and its applications[M]. Fontainebleau:Ecole des Mines, 1971.
[43] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241.
[44] MARTIN J D, SIMPSON T W. Use of Kriging models to approximate deterministic computer models[J]. AIAA Journal, 2005, 43(4):853-863.
[45] TOAL D J J, BRESSLOFF N W, KEAN A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5):1240-1252.
[46] 王晓锋, 席光. 基于Kriging模型的翼型气动性能优化设计[J]. 航空学报, 2005, 26(5):545-549. WANG X F, XI G. Aerodynamic optimization design for airfoil based on Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):545-549(in Chinese).
[47] 许瑞飞, 宋文萍, 韩忠华. 改进Kriging模型在翼型气动优化设计中的应用研究[J]. 西北工业大学学报, 2010, 28(4):503-510. XU R F, SONG W P, HAN Z H. Application of improved kriging-model-based optimization method in airfoil aerodynamic design[J]. Journal of Northwestern Polytechnical University, 2010, 28(4):503-510(in Chinese).
[48] LIU J, HAN Z H, SONG W P. Efficient kriging-based optimization design of transonic airfoils:Some key issues:AIAA-2012-0967[R]. Reston:AIAA, 2012.
[49] 孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4):437-441. SUN J F, LIU G, JIANG X, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4):437-441(in Chinese).
[50] HAN Z H, LIU J, SONG W P, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils:AIAA-2013-1108[R]. Reston:AIAA, 2013.
[51] 白俊强, 王波, 孙智伟, 等. 基于松散式代理模型管理框架的亚音速机翼优化设计方法研究[J]. 西北工业大学学报, 2011, 29(4):515-519. BAI J Q, WANG B, SUN Z W, et al. Developing optimization design of subsonic wing with losse type of agent model[J]. Journal of Northwestern Polytechnical University, 2011, 29(4):515-519(in Chinese).
[52] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6):759-764. SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinica, 2011, 29(6):759-764(in Chinese).
[53] 何欢, 朱广荣, 何成, 等. 基于Kriging模型的结构耐撞性优化[J]. 南京航空航天大学学报, 2014, 46(2):297-303. HE H, ZHU G R, HE C, et al. Crashworthiness optimization based on Kriging metamodeling[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2):297-303(in Chinese).
[54] 刘克龙, 姚卫星, 穆雪峰. 基于Kriging代理模型的结构形状优化方法研究[J]. 计算力学学报, 2006, 23(3):344-347, 362. LIU K L, YAO W X, MU X F. A method of structural shape optimization based on Kriging model[J]. Chinese Journal of Computational Mechanics, 2006, 23(3):344-347, 362(in Chinese).
[55] 杨军, 刘勇琼, 艾春安, 等. 改进Kriging模型在固冲发动机导弹气动优化设计中的应用[J]. 固体火箭技术, 2013, 36(5):590-593. YANG J, LIU Y Q, AI C A, et al. Application of improved Kriging-model-based optimization method in solid rocket-ramjet missile's aerodynamic design[J]. Journal of Solid Rocket Technology, 2013, 36(5):590-593(in Chinese).
[56] 孙凯军, 宋文萍, 韩忠华. 基于Kriging模型的高超声速舵面优化设计[J]. 航空计算技术, 2012, 42(2):9-12. SUN K J, SONG W P, HAN Z H. Optimization design of hypersonic control surface based on Kriging model[J]. Aeronautical Computing Technique, 2012, 42(2):9-12(in Chinese).
[57] 郑侃, 廖文和, 张翔. 基于近似模型管理的微小卫星结构多目标优化设计[J]. 中国机械工程, 2012, 23(6):655-659. ZHENG K, LIAO W H, ZHANG X. Multi-objective optimization design for microsatellite structure based on approximation model management[J]. China Mechanical Engineering, 2012, 23(6):655-659(in Chinese).
[58] 姚拴宝, 郭迪龙, 孙振旭, 等. 基于Kriging代理模型的高速列车头型多目标优化设计[J]. 中国科学, 2013, 43(2):186-200. YAO S B, GUO D L, SUN Z X, et al. Multi-objective optimization of the streamlined head of high-speed trains based on the kriging model[J]. Science China, 2013, 43(2):186-200(in Chinese).
[59] 韩永志, 高行山, 李立州. 基于Kriging模型的涡轮叶片多学科设计优化[J]. 航空动力学报, 2007, 22(7):1055-1059. HAN Y Z, GAO X S, LI L Z. Kriging model-based multidisciplinary design optimization for turbine blade[J]. Journal of Aerospace Power, 2007, 22(7):1055-1059(in Chinese).
[60] 张科施, 韩忠华, 李为吉, 等. 基于近似技术的高亚声速运输机机翼气动/结构优化设计[J]. 航空学报, 2006, 27(5):810-815. ZHANG K S, HAN Z H, LI W J, et al. Multidisciplinary aerodynamic/structural design optimization for high subsonic transport wing using approximation technique[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):810-815(in Chinese).
[61] SUN W Y, YUAN Y X. Optimization theory and methods:nonlinear programming[M]. New York:Springer Ebooks, 2006.
[62] HOLLAND J H. Adaptation in natural and artificial systems[M]. Ann Arbor:The University of Michigan Press, 1975.
[63] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA Langley Research Center, 2014.
[64] 吴宽展, 刘学军, 吕宏强. 超临界翼型设计中的多响应代理模型[J]. 航空计算技术, 2014, 44(4):17-22. WU K Z, LIU X J, LV H Q. Multi-output surrogate model in supercritical airfoil design[J]. Aeronautical Computing Technique, 2014, 44(4):17-22(in Chinese).
[65] ZIMMERMANN R. On the condition number anomaly of gaussian correlation matrices[J]. Linear Algebra and its Applications, 2015, 466:521-526.
[66] VIANA F A, HAFTKA R T, STEFFEN V. Multiple surrogates:How cross-validation errors can help us to obtain the best predictor?[J]. Structural and Multidisciplinary Optimization, 2009, 39(4):439-457.
[67] KOBLEWALIK J, OSBORNE M R. Methods for unconstrained optimization problems[M]. New York:Elsevier, 1968.
[68] NELDER J A, MEAD R. A simple method for function minimization[J]. The Computer Journal, 1965, 7(4):308-313.
[69] LOPHAVEN S N, NIELSEN H B, SØNDERGAARD J. DACE-A MATLAB Kriging toolbox (version 2.0):IMM-REP-2002-12[R]. Lyngby:Informatics and Mathematical Modelling, Technical University of Denmark, 2002.
[70] YIN J, NG S H, NG K M. Kriging meta model with modified nugget-effect:The heteroscedastic variance case[J]. Computers Industrial Engineering, 2011, 61(3):760-777.
[71] FORRESTER A I J, KEANE A J, BRESSLOFF N W. Design and analysis of noisy computer experiments[J]. AIAA Journal, 2006, 44(10):2331-2339.
[72] ETMAN L F P. Design and analysis of computer experiments:The Method of Sacks et al:Engineering Mechanics report WFW 94-098[R]. Eindhoven, The Netherlands:Eindhoven University of Technology, 1994.
[73] OSIO I G, AMON C H. An engineering design methodology with multistage bayesian surrogate and optimal sampling[J]. Research in Engineering Design, 1996, 8(4):189-206.
[74] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[75] COX D D, JOHN S. SDO:A statistical method for global optimization[C]//IEEE International Conference on Systems, Man & Cybernetics, 1992:1241-1246.
[76] TORCZON V, TROSSET M W. Use approximation to accelerate engineering design optimization:AIAA-1998-4800[R]. Reston:AIAA, 1998.
[77] BOOKER A J. Design and analysis of computer experiments:AIAA-1998-4757[R]. Reston:AIAA, 1998.
[78] MECKESHEIMER M, BARTON R R, SIMPSON T, et al. Metamodeling of combined discrete/continuous responses[J]. AIAA Journal, 2001, 39(10):1950-1959.
[79] CHEN S K, XIONG Y, CHE W. Multiresponse and multistage metamodeling approach for design optimization[J]. AIAA Journal, 2009, 47(1):206-218.
[80] HAN Z H, ZHANG K S, SONG W P, et al. Optimization of active flow control over an airfoil using a surrogate-management framework[J]. Journal of Aircraft, 2010, 47(2):603-612.
[81] ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic/structural optimization of a subsonic transport wing using a surrogate model[J]. Journal of Aircraft, 2008, 45(6):2167-2171.
[82] CHUNG J J, ALONSO H S. Using gradients to construct cokriging approximation models for high-dimensional design optimization problems:AIAA-2002-0317[R]. Reston:AIAA, 2002.
[83] CHUNG J J, ALONSO H S. Design of a low-boom supersonic business jet using cokriging approximation models:AIAA-2002-5598[R]. Reston:AIAA, 2002.
[84] LIU W, BATILL S M. Gradient-enhanced response surface approximations using kriging models:AIAA-2002-5456[R]. Reston:AIAA, 2002.
[85] LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with Kriging and Cokriging[J]. AIAA Journal, 2008, 46(2):498-507.
[86] JAMESON A. Optimum aerodynamic design using cfd and control theory:AIAA-1995-1729[R]. Reston:AIAA, 1995.
[87] DWIGHT R, HAN Z H. Efficient uncertainty quantification using gradient enhanced Kriging:AIAA-2009-2276[R]. Reston:AIAA, 2009.
[88] HAN Z H, GOERTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1):177-189.
[89] YAMAZAKI W, RUMPFKEIL M P, MAVRIPLIS D J. Design optimization utilizing gradient/hessian enhanced surrogate model:AIAA-2010-4363[R]. Reston:AIAA, 2010.
[90] HAN Z H. Improving adjoint-based aerodynamic optimization via gradient-enhanced Kriging:AIAA-2012-0670[R]. Reston:AIAA, 2012.
[91] DAVID M. Geostatistical ore reserve estimation[M]. Amsterdam:Elsevier, 1977:1-364.
[92] JOURNEL A G, HUIJBREGTS J C. Mining geostatistics[M]. New York:Academic Press, 1978:1-600.
[93] MYERS D E. Matrix formulation of Cokriging[J]. Mathematical Geology, 1982, 14(3):249-257.
[94] GOOVAERTS P. Ordinary CoKriging revisited[J]. Mathematical Geology, 1997, 30(1):21-42.
[95] PAPRITZ A. Standardized vs customary ordinary CoKriging:some comments on the article "the geostatistical analysis of experiments at the landscape-scale" by T.F.A. Bishop and R.M., Lark[J]. Geoderma, 2008, 146(1):391-396.
[96] KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1):1-13.
[97] QIAN Z, WU C F J. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics, 2008, 50(2):192-204.
[98] FORRESTER A I J, SÓBESTER A, KEANE A J. Multi-fidelity optimization via surrogate modeling[J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2007, 463(2088):3251-3269.
[99] KUYA Y, TAKEDA K, ZHANG X, et al. Multifidelity surrogate modeling of experimental and computational aerodynamic data sets[J]. AIAA Journal, 49(2):289-298.
[100] ZIMMERMANN R, HAN Z H. Simplified cross-correlation estimation for multi-fidelity surrogate cokriging models[J]. Advance and Applications in Mathematical Sciences, 2010, 7(2):181-201.
[101] HAN Z H, ZIMMERMANN R, GOERTZ S. A new CoKriging method for variable-fidelity surrogate modeling of aerodynamic data:AIAA-2010-1225[R]. Reston:AIAA, 2010.
[102] JOSEPH V R, HUNG Y, SUDJIANTO A. Blind Kriging:A new method for developing metamodels[J]. Journal of Mechanical Design, 2008, 130(3):350-353.
[103] ZHAO L, CHOI K K, LE I. Metamodeling method using dynamic Kriging for design optimization[J]. AIAA Journal, 2011, 49(9):2034-2046.
[104] LIANG H Q, ZHU M, WU Z. Using cross-validation to design trend function in Kriging surrogate modeling[J]. AIAA Journal, 2014, 52(10):2313-2327.
[105] ANKENMAN B E, NELSON B L, STAUM J. Stochastic Kriging for simulation metamodeling[J]. Operations Research, 2010, 58(2):371-382.
[106] LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012.
[107] JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization,2001, 21(4):345-383.
[108] BOOKER A J, DENNIS J J, FRANK P D, et al. A rigorous framework for optimization of expensive functions by surrogates[J]. Structural Optimization, 1998, 17(1):1-13.
[109] SASENA M J, PAPALAMBROS P Y, GOOVAERTS P. Exploration of metamodeling sampling criteria for constrained global optimization[J]. Engineering Optimization, 2002, 34(34):263-278.
[110] PARR J M, KEANE J A, FORRESTER I J, et al. Infill sampling criteria for surrogate-based optimization with constraint handling[J]. Engineering Optimization, 2012, 44(10):1147-1166.
[111] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 186(2-4):311-338
[112] ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4):687-696.
[113] 刘俊. 基于代理模型的高效气动优化设计方法及应用[D]. 西安:西北工业大学, 2015. LIU J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[114] 高月华, 王希诚. 基于Kriging代理模型的多点加点序列优化方法[J]. 工程力学, 2012, 29(4):90-95. GAO Y H, WANG X C. A sequential optimization method with multi-point sampling criterion based on kriging surrogate mode[J]. Engineering Mechanics, 2012, 29(4):90-95(in Chinese).
[115] 刘俊, 宋文萍, 韩忠华, 等. 梯度增强的Kriging模型与Kriging模型在优化设计中的比较研究[J]. 西北工业大学学报, 2015, 3(3):819-826. LIU J, SONG W P, HAN Z H, et al. Comparative study of gek (gradient-enhanced Kriging) and Kriging when applied to design optimization[J]. Journal of Northwestern Polytechnical University, 2015, 3(3):819-826(in Chinese).
[116] JAMIL M, YANG X S. A literature survey of benchmark functions for global optimization problems[J]. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4(2):150-194.
[117] ROSENBROCK H H. An automatic method for finding the greatest or least value of a function[J]. The Computer Journal, 1960, 3(3):175-184.
[118] MICHALEWICZ Z. Genetic algorithm, numerical optimization, and constraints[C]//Proceedings of the Sixth International Conference on Genetic Algorithms, 1995:151-158.
[119] TESFAHUNEGN Y A, KOZIEL S, GRAMANZINI J R, et al. Application of direct and surrogate-based optimization to two-dimensional benchmark aerodynamic problems:A comparative study:AIAA-2015-0265[R]. Reston:AIAA, 2015.
[120] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston:AIAA, 2016.
[121] REN J, THELEN A, AMRIT A, et al. Application of multi-fidelity optimization techniques to benchmark aerodynamic design problems:AIAA-2016-1542[R]. Reston:AIAA, 2016.
[122] LYU Z, KENWAY G KW, MARTINS J R R A. Aerodynamic shape optimization studies on the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4):968-985.
[123] KENWAY G K W, MARTINS J R R A. Multipoint aerodynamic shape optimization investigations of the common research model wing[J]. AIAA Journal, 2016, 54(1):112-128.
[124] KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions:AIAA-2016-1294[R]. Reston:AIAA, 2016.
[125] LIEM R, KENWAY G K W, MARTINS J R R A. Multi-mission aircraft fuel burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2015, 53(1):104-122.
[126] 张科施, 韩忠华, 李为吉, 等. 一种考虑气动弹性的运输机机翼多学科优化方法[J]. 空气动力学学报, 2008, 26(1):1-7. ZHANG K S, HAN Z H, LI W J, et al. A method of coupled aerodynamic/structural integration optimization for transport-wing design[J]. Acta Aerodynamica Sinica, 2008, 26(1):1-7(in Chinese).
[127] KENWAY G K W, KENNEDY G J, MARTINS J R R A. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and derivative computations[J]. AIAA Journal, 2014, 52(5):935-951. |