[1] Oswatitsch K. Similarity laws for hypersonic flow[J]. Royal Institute of Technology, 1950, 2: 249-264.
[2] Kliche D, Mundt C H, Hirschel E H. The hypersonic Mach number independence principle in the case of viscous flow[J]. Shock Waves, 2011, 21(4): 307-314.
[3] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill Book Company, 1989.
[4] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536.
[5] Bertin J J, Cummings R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38: 129-157.
[6] Reshotko E, Tumin A. The blunt body paradox—a case for transient growth[M]//Fasel H F, Saric W S. Laminar-turbulent transition. Heidelberg: Springer, 2000: 403-408.
[7] Hirschel E H, Weiland C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Heidelberg: Springer-Verlag, 2009.
[8] Kuchemann D. The aerodynamic design of aircraft: a detailed introduction to the current aerodynamic knowledge and practical guide to the solution of aircraft design problems[M]. Oxford: Pergamon Press, 1978.
[9] Corda S, Anderson J. Viscous optimized waveriders designed from axisymmetric flow fields, AIAA-1988-0369[R]. Reston: AIAA, 1998.
[10] Stollery J L. Viscous interaction effects and re-entry aerothermodynamics: theory and experimental results[M]//Aerodynamic problems of hypersonic vehicles. 1972, 42: 191-1028.
[11] Nonweiller T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(4): 521-528.
[12] Bushnell D A. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36: 81-96.
[13] Xu Y Z, Xu Z Q, Li S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(5): 981-988.
[14] Lockwood M K, Petley D H, Martin J G, et al. Airbreathing hypersonic vehicle design and analysis methods and interactions[J]. Progress in Aerospace Sciences, 1999, 35(1): 1-32.
[15] Brandeis J, Gill J. Experimental investigation of side-jet steering for supersonic and hypersonic missiles[J]. Journal of Spacecraft and Rockets, 1996, 33(3): 346-352.
[16] Gulhan A, Schutte G, Stahl B. Experimental study on aerothermal heating caused by jet-hypersonic crossflow interaction[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 891-899.
[17] Tong B G, Kong X Y, Deng G H. Gasdynamics[M]. Beijing: High Education Press, 1989 (in Chinese). 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京: 高等教育出版社, 1989.
[18] Josyula E, Pinney M, Blake W B. Applications of a counterflow drag reduction technique in high speed systems, AIAA-2001-2437[R]. Reston: AIAA, 2001.
[19] Bracken R M, Hartley C S, Myrabo L N. Experimental and computational parametric drag study of an‘airspike’in hypersonic flow, AIAA-2002-3784[R]. Reston: AIAA, 2002.
[20] Ben-dor G. Shock wave reflection phenomena[M]. Israel: Springer, 2007.
[21] Ben-dor G, Ivanov M, Vasiliev E I, et al. Hysteresis processes in the regular reflection↔Mach reflection transition in steady flows[J]. Progress in Aerospace Science, 2002, 38(4-5): 347-387.
[22] Li S G, Gao B, Wu Z N. Time history of regular to Mach reflection transition in steady supersonic flow[J]. Journal of Fluid Mechanics, 2011, 682: 160-184.
[23] Edney B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock, No. FFA-115[R]. 1968.
[24] Hans F D, Keyes J W. Shock interference heating in hypersonic flows[J]. AIAA Journal, 1972, 10(11): 1441-1447.
[25] Gaitonde D, Shang J S. On the structure of an unsteady type Ⅳ interaction at Mach 8[J]. Computer & Fluids, 1995, 24(4): 469-485.
[26] George E K. A method for predicting shock shapes and pressure distributions for a wide variety of blunt bodies at zero angle of attack, NASA TN D4539[R]. Washington, D.C.: NASA, 1968.
[27] Tan L H, Ren Y X, Wu Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows[J]. Journal of Fluid Mechanics, 2006, 546(1): 341-362.
[28] Maslov A A. Hypersonic boundary layer transition and control[M]. Netherlands: Springer, 2010.
[29] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8-20.
[30] Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493.
[31] Hu R F, Wu Z N, Wu Z, et al. Aerodynamic map for soft and hard hypersonic level flight in near space[J]. Acta Mechanica Sinica, 2009, 25(4): 571-575.
[32] Babinsky H, Harvey J K. Shock wave-boundary-layer inter-actions[M]. New York: Cambridge University Press, 2011.
[33] Gaitonde D V. Progress in shockwave/boundary layer interactions, AIAA-2013-2607[R]. Reston: AIAA, 2013.
[34] Panaras A G. Review of the physics of swept-shock/boundary layer interactions[J]. Progress in Aerospace Sciences, 1996, 32(2-3): 173-244.
[35] Dolling D S. Fifty years of shock-wave/boundary-layer interaction research: what next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.
[36] Clemens N T, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review Fluid Mechanics, 2014, 46: 469-492.
[37] Zheltovodov A A. Shockwaves/turbulent boundary-layer interactions-fundamental studies and applications, AIAA-1996-1977[R]. Reston: AIAA, 1996.
[38] Délery J, Dussauge J P. Some physical aspects of shock wave/boundary layer interactions[J]. Shock Waves, 2009, 19(6): 453-468.
[39] Li S X. Complex flow controlled by shock waves and boundary layers[M]. Beijing: Science Press, 2007 (in Chinese). 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007.
[40] Humble R A, Scarano F, van Oudheusden B W. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635: 47-74.
[41] Chen W F, Zhang Z C, Shi Y Z, et al. The prediction of fluctuating pressure on the surface of reentry vehicles[J]. Journal of National University of Defense Technology, 2001, 23(6): 20-23 (in Chinese). 陈伟芳, 张志成, 石于中, 等. 再入体表面脉动压力环境的预测[J]. 国防科技大学学报, 2001, 23(6): 20-23.
[42] Plotkin K J, Roberson J E. Prediction of space shuttle fluctuating pressure environments, including rocket plume effects, NASA N73-29885, NASA-CR-124347[R]. Washington, D.C.: NASA, 1973.
[43] Yu K H, Trouve A, Daily J W. Low frequency pressure oscillations in a model ramjet combustor[J]. Journal of Fluid Mechanics, 1991, 232: 47-72.
[44] Tan C K W, Block P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399.
[45] Rossiter J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, RAE Technical Report No. 6403[R]. 1964.
[46] Gao B,Wu Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics, 2010, 656: 29-50.
[47] van Driest E R. The problem of aerodynamic heating[J]. Aeronautical Engineering Review, 1956, 15(10): 26-41.
[48] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2): 73-85.
[49] Hung F T, Barnett D O. Shock wave/boundary layer interference heating analysis, AIAA-1973-0237[R]. Reston: AIAA, 1973.
[50] Belouaggadia N, Olivier H, Brun R. Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows[J]. Journal of Fluid Mechanics, 2008, 607: 167-197.
[51] Belouaggadia N, Takayama K, Brun R, et al. Shock layers over blunt and conical bodies in hypersonic non-equilibrium flow[J]. Shock Waves, 2010, 20(4): 333-338.
[52] Xu S S. Numerical simulation of flows for vehicle flying in the transitional regime[D]. Beijing: Tsinghua University, 2008 (in Chinese). 徐珊姝. 过渡区飞行器流场的数值模拟和计算方法研究[D]. 北京: 清华大学, 2008.
[53] Hu R F, Wu Z N, Wu Z, et al. Aerodynamic map for soft and hard hypersonic level flight in near space[J]. Acta Mechanica Sinica, 2009, 25(4): 571-575.
[54] Wang X X, Hu R F, Wu Z N. Analysis of special aerodynamic phenomena[J]. Nearspace Science and Technology, 2009, 1(1): 34-42 (in Chinese). 王晓欣, 胡锐锋, 吴子牛. 临近空间特殊气动问题分析[J]. 临近空间科学与工程, 2009, 1(1): 34-42.
[55] Wu Z N, Xu Y Z, Wang W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513.
[56] Dalle D J, Fotia M L, Driscoll J F. Reduced-order modeling of two-dimensional supersonic flows with applications to scramjet inlets[J]. Journal of Propulsion and Power, 2010, 26(3): 545-555.
[57] Zhang Y S, Bi W T, Hussain F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2014, 739: 392-420.
[58] Zhang Y S, Bi W T, Hussain F, et al. Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers[J]. Physical Review Letters, 2012, 109(5): 054502.
[59] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.
[60] Jiang Z, Xiao Z L, Shi Y P, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows[J]. Physics of Fluids, 2013, 25(10): 106102.
[61] Hu R F, Wu Z N, Qu X, et al. Debris reentry and ablation prediction and ground risk assessment software system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 390-399 (in Chinese). 胡锐锋, 吴子牛, 曲溪, 等. 空间碎片再入烧蚀预测与地面安全评估软件[J]. 航空学报, 2011, 32(3): 390-399.
[62] Wang Z H, Bao L, Tong B G. Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows[J]. Physics of Fluids, 2010, 22(12): 126103.
[63] Wu Z N. Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall[J].Probabilistic Engineering Mechanics, 2003, 18(3): 241-249.
[64] Wang W B, Wu Z N, Wang C F, et al. Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model[J]. Science China Physics, Mechanics and Astronomy, 2013, 56 (11): 2143-2150.
[65] Wu Z N. The number e1/2 is the ratio between the time of maximum value and the time of maximum growth rate for restricted growth phenomena? [EB/OL]. http://arxiv.org/abs/1401.2400.pdf.
[66] Li J, Wu Z N. A note on restricted growth process with competitive production and dissipation mechanisms[J]. In preparation.
[67] Trinh K T. On the Karman constant[EB/OL]. http:// arxiv.org/pdf/1007.0605.pdf.
[68] Sreenivasan K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778-2784. |